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Abstract

The Jacobi difference equation (JDE) plays an important role (not just) in math-
ematical physics: e.g., it containes the one-dimensional discrete Schrodinger
equation as a special case and is intimately related to the theory of orthogonal
polynomials as well as to continued fractions.

While classical oscillation theory for Jacobi operators puts the sign-changes of
solutions of one single operator at the centre of consideration, we compare the
number of sign-changes of solutions of two different Jacobi operators. We show
that this difference equals the number of weighted sign-changes of the Wronskian
of those solutions.

The key discovery in oscillation theory, which goes back to the work of Sturm,
is the fact that for any real z the number of sign-changes of a solution wu(z)
equals the number of eigenvalues of the operator below z. Our theorem refines
this observation for the JDE by showing that the number of weighted sign-
changes of the Wronskian equals the difference of the number of eigenvalues
of the operators in the corresponding interval. The main advantage of this
approach is that our theorem is also applicable in gaps of the essential spectrum
above its infimum, where the classical theorem breaks down (since the solutions
are oscillatory, but the Wronskian isn’t).

This theorem is proven for compact, sign-definite perturbations of the potential
of Jacobi operators on the line and on the half-line. For the finite case, we extend
earlier work for perturbations of the potential to perturbations of all coefficients.
Moreover, we show that this idea carries over to the leading principal minors of

Jacobi matrices, which exhibit the same sign pattern as a solution at 0.






Zusammenfassung

Die Jacobi Differenzengleichung (JDG) spielt (nicht nur) in der mathemati-
schen Physik eine wichtige Rolle: z.B. beinhaltet sie die eindimensionale diskrete
Schrodingergleichung als Spezialfall und ist eng mit der Theorie der orthogona-
len Polynome sowie den Kettenbriichen verkniipft.

Wiihrend die klassische Oszillationstheorie fiir Jacobi Operatoren die Vorzei-
chenwechsel der Losungen eines einzigen Operators ins Zentrum ihrer Betrach-
tungen stellt, vergleichen wir die Anzahl der Vorzeichenwechsel von Lésungen
zweier verschiedener Jacobi Operatoren. Wir zeigen, dass diese Differenz der An-
zahl der gewichteten Vorzeichenwechsel der Wronski Determinante der beiden
Losungen entspricht.

Die zentrale Entdeckung der Oszillationstheorie geht zuriick auf Sturm und be-
sagt, dass fiir jedes reelle z die Anzahl der Vorzeichenwechsel einer Losung u(z)
der Anzahl der Eigenwerte des Operators unterhalb von z entspricht. Unser
Theorem entwickelt diese Beobachtung fiir die JDG dahingehend weiter, dass
es zeigt, dass die Anzahl der gewichteten Vorzeichenwechsel der Wronski De-
terminante der Differenz der Anzahl der Eigenwerte der beiden Operatoren im
zugehorigen Intervall entspricht. Der Vorteil dabei ist, dass unser Theorem auch
in Liicken des wesentlichen Spektrums iiberhalb seines Infimums anwendbar ist,
im Gegensatz zum klassischen Theorem (da die Losungen hier oszillatorisch
sind, die Wronski Determinante aber nicht).

Dieses Theorem wird fiir kompakte, vorzeichenbestimmte Stérungen des Poten-
tials von singuléren Jacobi Operatoren, wie auch von Jacobi Operatoren mit ei-
nem regulidren Endpunkt, bewiesen. Fiir den endlichen Fall erweitern wir frithere
Arbeiten iiber Stérungen des Potentials auf Stérungen aller Koeffizienten. Wei-
ters zeigen wir, dass sich diese Idee auch auf die fithrenden Hauptminoren von
Jacobi Matrizen {ibertragen lasst, da sie das selbe Vorzeichenmuster aufweisen

wie eine Losung bei 0.
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Chapter 1

Introduction

In this thesis we present new oscillation theorems for a particular discrete equa-
tion, namely the Jacobi difference equation (JDE),

TU = zU, (1.1)
where z € R,

T:U(Z) — 0(Z),
u(n) = (tu)(n) = a(n)u(n 4+ 1) + a(n — Du(n — 1) + b(n)u(n) (1.2)
= d(a(n —1)du(n — 1)) + (b(n) + a(n) + a(n — 1))u(n),

and where £(I) = {¢ | ¢ : I C7Z — R} is the space of real-valued sequences and
do(n) = p(n+ 1) — p(n) is the usual forward difference operator.

The JDE can be viewed as the discrete counterpart of the famous Sturm—

Liouville differential equation, Tu = zu, where

T = % (—i{p(m)ddx + q(a:)) . (1.3)

Setting @ = 1 (that is p = r = 1 in the continuous case) we obtain the one-
dimensional Schrédinger equation as a special case. Besides that, Jacobi opera-
tors appear at various other occasions in mathematics, physics and engineering:
they constitute a simple one-band tight binding model in quantum mechanics
[9], a model for a chain of masses coupled via springs and fixed at both end
points, or for a rod vibrating in longitudinal motion [20]; they are closely re-
lated to orthogonal polynomials on the real line as well as to continued fractions
[22, 10] and they play a fundamental role in the investigation of the Toda and

the Kac-van Moerbeke lattices [11]. A comprehensive introduction to Jacobi



operators can be found in [42] and for a more general treatment of difference
equations, as well as discrete oscillation theory, and boundary value problems,

we refer for example to [15, 26], [1], and [5], respectively.

A key observation of oscillation theory for Sturm-Liouville operators, as well as
for Jacobi operators [18], is the famous oscillation theorem, which goes back to
the seminal work of Sturm from 1836 [10] and states that the n-th eigenfunction
has exactly n — 1 sign-changes (nodes). But the fact that above the infimum
of the essential spectrum of a Sturm-Liouville operator, and also of a Jacobi
operator, all solutions are oscillatory (i.e., they have infinitely many nodes) has
brought up the question how oscillation theory can be extended to gaps of the
essential spectrum above its infimum, since a naive use of course leads to co—oco.
This problem has first been overcome by Gesztesy, Simon, and Teschl in [19]
where they showed that the number of eigenvalues of a Sturm-Liouville oper-
ator in a gap of the essential spectrum equals the number of sign-changes of
the Wronskian of two suitable solutions, see also [35, 48] for a review of the
continuous case and its discrete counterpart [46].

We will extend this concept to perturbations of Jacobi operators in the following
sense: we show that the number of weighted nodes of the Wronski determinant
(which we will call the relative nodes) of two suitable solutions of two different
JDEs equals the number of eigenvalues the perturbation inserts into or removes
from a gap of the essential spectrum. In the continuous case the link to per-
turbation theory has been established in [29, 30], which already led to new

eigenvalue asymptotics [27] and relative oscillation criteria [23].

Before we go into further details and make rigorous statements, we recall some
basic principles on which our considerations rely. The spectral problems arising
from the JDE, where we impose either Dirichlet boundary conditions at finite
points or square summability near infinite endpoints, are formulated in terms

of Jacobi matrices: we consider infinite Jacobi operators,

H : (*(Z) — (*(Z) (1.4)
R

given by the infinite matrix




semi-infinite Jacobi operators,

Hy : (*(£N) = /2(£N) (1.6)
YTy,
associated with
b(1) a(1)
Hy = 14a1) b?2) ;o Ho= b(—-2) a(-2) |- (1.7)
a(=2) b(—1)

a(N — 2)

a(N—2) b(N—1)

We assume that a,b € £°°(Z) and thus all the mentioned operators are bounded.
Moreover, it’s well-known that they are self-adjoint (hence the spectrum is con-
tained in the real axis) and that their point spectra are simple, confer e.g. [412].
The spectrum of a Jacobi matrix remains unchanged if we alter signs in the
sequence a, but, since the signs of the solutions depend on a from now on we
assume a(n) < 0 for all n unless we state something else explicitly.

The solution space of the Jacobi difference equation is two-dimensional and by
a solution u = u(z) of Tu = zu we will always mean a nontrivial one, i.e., we
exclude the case u = 0. Hence, a solution u cannot have two consecutive zeros.
From now on we denote solutions u(z) fulfilling the right/left boundary condition
of the corresponding operator (which will be evident from the context) by u (z).
A short calculation shows that a solution u(z) of 74 = zu, or precisely the
projection of u(z) into the corresponding subspace ¢((0,NV)), is an eigenvector
of J if and only if u(z) fulfills u(z,0) = u(z, N) = 0.

Solutions fulfilling u (z) € £2(£N) are called Weyl solutions and exist for all z ¢
Oess(Hx), where o.ss(Hy) denotes the essential spectrum of Hy. Throughout
our considerations, the spectral parameter z will always be in a gap of the
essential spectrum, hence the solutions u (z) always exist when we need them
(recall that oess(H) = 0css(H-) U 0ess(Hy) holds).



Let u; = u;(z;) be a solution of the JDE 7ju = zju, where j = 0,1. Then we
define their (modified) Wronskian as the sequence W (ug,u1) € €(Z), where

Wi (uo, u1) = a(n)(uo(n)ui(n + 1) — ur(n)uo(n + 1)) (1.9)
for all n € Z. At each point n we weight

1 ifbg(n+1)—2z0—bi(n+1)+ 2 >0 and
either W, (ug, u1)Whp41(uo,u1) <0
or Wi, (ug,u1) =0 and W, 41(ug,u1) #0

#n(uo,ul) = -1 if bo(n+1)—ZQ—b1(n+1)+21 < 0 and (110)
either W, (ug, u1)Whp41(uo,u1) <0
or Wy, (ug,u1) # 0 and W, 41(ug,u1) =0

0 otherwise
and say the Wronskian has a (weighted) node at n if #,(ug,u1) # 0.

The main aim of this thesis is, to prove the relative oscillation theorem for

infinite Jacobi operators, which is

Theorem 1.1. Let ag = a1 < 0 and let a;,b; € (*°(Z), where j = 0,1, such
that lim, 1+ bo(n) = b1(n) and bo(n) > bi(n) for all In| > N and some N.
Then, for each z & o.ss(Hp) the number of weighted nodes of the Wronskian

o0 L if W(uo,4(2), u1,-(2))
N(z) = Z #n(uo,+(2), w1, (2)) — vanishes near —oo  (1.11)

n—=—oo

0 otherwise

= Lif W(uo,—(2), u1,4+(2))
= Z #n(to,— (2), u1,4(2)) — vanishes near —oo  (1.12)

n—=—oo

0 otherwise
is finite, and if moreover [z—, z4| N 0ess(Ho) = 0, then
E._..y(Hi) = E_ . (Ho) = N(zy) = N(z-), (1.13)
and if z < inf oe55(Hp), then
B(—oo,2)(H1) — BE(_o 21 (Ho) = N(2), (1.14)

where Eq(Hj) is the number of eigenvalues of H; in Q C R, and uj+(z) are
corresponding Weyl solutions, i.e., uj 1 (z) € (*(£N).



Thereto, recall that
Uess(HO) = Uess<H1) (115)

and also 0ess(HY) = 0.5s(HL) holds since the perturbation is compact. We
moreover assumed that by — by is sign-definite near infinite endpoints to ensure
that the limits exist. In Chapter 9 we present further oscillation theorems for

infinite Jacobi operators and z < inf o.45(Hp).

Hence, we notice that as z increases, each of the Wronskians W (ug 4 (2), u1,—(2))
and W (ug,—(2),u1 +(z)) receives a new node at each eigenvalue of Hy and loses
a node at each eigenvalue of Hy. At each z in both resolvent sets, the number
of nodes remains unchanged and for each z in both spectra the Wronskians lose
a node locally, that is, N'(z —¢) = N(z) + 1 = N(z +¢).

Our next objective is, to establish the relative oscillation theorem also for semi-

infinite Jacobi operators:

Theorem 1.2. Let ag = a; < 0 and let a;,b; € (*°(N), where j = 0,1, such
that lim,, o0 bo(n) = b1(n) and bo(n) = by (n) for alln > N and some N. Then,
for each z & 0ess (H_?_) the number of weighted nodes of the Wronskian

= 1 if Wo(uo,+(2), u1,—(2)) =
N(z) = #nluo1(2),u1,-(2) — , (1.16)
"0 0 otherwise
= 1 if Wo(uo,—(2),u1,4(2)) =0
=3 #aluo(2) w4 (2)) - ,
n=0 0 otherwise
is finite, and if moreover [z_,zy] Noess(HY) =0, then
E. . (H})=E,_ . (H))=N(2q) — N(z_), (1.17)
and if z < infaess(Hg_), then
E(—oo,z)(quL) - E(—oo,z] (H?») = N(Z)v (118)

where EQ(H'_],'_) is the number of eigenvalues of Hi in @ CR, and uj 1 (z) are
solutions fulfilling the right/left boundary condition of Hi, i.e., uj 4+ € (*(N)
and u; —(0) = 0.

We present further oscillation theorems for semi-infinite Jacobi operators and
z < inf oeSS(Hﬁ)r) in Chapter 9.

Now we briefly review the proof of these two theorems. In Chapter 7 we show

that the Wronskian has at most finitely many weighted nodes in gaps of the



essential spectrum. In doing so, we also study Wronskians of solutions corre-
sponding to two different spectral parameters, which generalizes earlier findings

from [46] to the case of two different Jacobi operators.

In particular, the following should be mentioned: if there are at most finitely
many eigenvalues in a gap (z_,zy) of the essential spectrum of Hy, then the
Wronskian W (ug(z_),u1(24)) is oscillatory if and only if the perturbation in-
serts an infinite number of eigenvalues into the gap (which of course accumulate
at the boundary). Therefore, see the following theorem, which we prove in
Chapter 7:

Theorem 1.3. Let ag = a1 < 0, lim,, 100 bp(n) = b1(n), and bo(n) = b1(n)
for all In| = N and some N. Then, for all z_,z; € R, z_ < z1, such that
dimRan P, . y(Ho) < oo holds we have

Z+)

Z #n(uo(z-),u1(24)) <oo <= dimRanP;_ . y(H;) <oco, (1.19)

n=—oo

where u;(z+) are (arbitrary) solutions of Tju = zxu, j = 0,1, and Po(H;)
denote the spectral projections of H;, Q@ C R. The same holds for Hy if we
count the nodes at £N.

The next step in the proofs of Theorem 1.1 and Theorem 1.2 is based on the rel-
ative oscillation theorem for finite Jacobi matrices from [4], confer Theorem 1.4.
We look at (suitably modified) finite Jacobi matrices of sufficiently large dimen-
sions and the (suitably modified) corresponding Wronskians, where the modifi-
cation is such, that we adapt the right boundary condition of the finite matrix
to the Weyl solution u. Using the approximation technique which we develop
comprehensively in Chapter 8, we then show, that the number of eigenvalues in
the considered gap, as well as (the number of nodes of) the Wronskians, converge
in some sense to their semi-infinite counterparts. The continuous counterpart
of such a technique has already been applied in the Sturm-Liouville [29, 30]
and in the Dirac case [37] and goes back to Stolz and Weidmann [38], see also
[50]. The present discrete case extends [42, 46]. This already leads to the os-
cillation theorems for Wronskians, established in Chapter 9, which hold below

the essential spectrum.

However, above the infimum of the essential spectrum the situation differs dra-
matically since we have to approximate two Wronskians at once, but the Weyl
solution (which generates the boundary conditions for the finite matrices) cor-
responds only to one of them. And hence, we don’t obtain enough information
on the second one as well as on the corresponding endpoint of the interval, but

due to the sign-definiteness of the perturbation, we obtain at least an inequal-



ity. Approximating twice (at both endpoints of the interval) means that we end
up with two inequalities which aren’t sharp enough to obtain the theorem. A
closer look at the approximation shows, that a possible eigenvalue at a foreign
endpoint of the half-open interval actually is approximated from the ’wrong’
side, i.e., a possible eigenvalue at the closed endpoint is approximated from out-
side the spectral interval under consideration such that it doesn’t appear in the
finite spectra but suddenly in the limit spectrum. Thus, for semi-infinite Jacobi
operators we obtain a first version of Theorem 1.2 in Section 10.1, but with the

additional assumption
z_¢o(H}) and zp & o(HY). (1.20)

To get rid of (1.20), we develop a new strategy in Section 10.2 which (until now)
has no Sturm-Liouville or Dirac counterpart: a symmetry argument shows that
it’s enough to look at the vicinity of a point which is in both spectra. In doing so,
we perturb one of the semi-infinite operators ’slightly’ near the regular endpoint
to move the eigenvalue away from the original position such that we can apply
the theorem we already have. Since this perturbation is limited to one of the
operators and to the vicinity of the regular endpoint, both Wronskians change
only locally, namely at the position 0, where we can explicitly compute that the
Wronskian at the original eigenvalue wins a node. This completes the proof of
Theorem 1.2.

In Section 11.1 we approximate infinite Jacobi operators by semi-infinite Jacobi
operators and obtain Theorem 1.1 with the additional assumption

z_ ¢o(Hy) and 2z € o(Hp) (1.21)

in a similar manner. And again we consider the case of a common eigenvalue at
the boundary of the spectral interval. Now we have to refine our perturbation
argument a bit: since there’s no regular endpoint, the Wronskian now changes
at infinitely many points as soon as we perturb the operator, which cannot be
computed explicitly.

But if we perturb the operator sufficiently far on the left, we can ensure that the
Wronskian at the original eigenvalue cannot lose nodes since the perturbation is
sign-definite. And since the eigenvalue is approximated, we can perturb one of
the operators ’slightly’ at a sufficiently small point in Z where the Weyl solution
(taken at a suitable point on the real axis which is moreover sufficiently near
to the original eigenvalue) of the second Wronskian vanishes and hence the
second Wronskian remains unchainged. Thus, this provides exactly the missing

inequality to eliminate (1.21) and hence to prove our main theorem.



Now, we moreover want to introduce our extensions of the relative oscillation

theorem for finite Jacobi matrices from [3, 4]. Therefore, recall the following

Theorem 1.4. Confer Theorem 1.2 in [/]. Let ag = a1 < 0, then

E(—oo,zl)(Jl) - E(—oo,zo] (‘]0)

N-1 . _
= #5(uo,+(20), u1,—(21)) — ' ZfWO(lfO#(ZO)?uLi(Zl))70 (1.22)
=0 0 otherwise
N-1 . _
=S o Gohur s (e — ol BN =0 o)
=0 0 otherwise

holds, where Eq(J;),j = 0,1, is the number of eigenvalues of J; in Q@ C R, and
uj +(2;) are solutions fulfilling the right/left Dirichlet boundary condition of J;,
e, u;j (25, N) =u; _(z;,0) =0.

First of all, we allow different a’s. Therefore, we extend the definition of the
Wronskian to
Wi (ug,ur) = up(n)ar(n)ur(n + 1) — ug(n)ag(n)ug(n + 1) (1.24)

and the weighting of the relative nodes to

1 if Wi (uo, ur)ug(n + 1)ui(n+1) > 0 and
either W, (ug, u1)Whp41(ug,u1) <0
or Wy, (ug,u1) =0 and Wi,41(ug,u1) # 0

#Hn(uo,ur) =9 —1 if Wy (ug,u1)ug(n + Dug(n+1) > 0 and (1.25)
either W, (ug, u1)Wh41(ug,u1) <0
or W, (ug,u1) # 0 and Wy, 11 (ug,u1) =0

0 otherwise.

Of course, if ay = a1, then the Wronskian as well as the counting method
reduce to those introduced in [1] which are (1.9) and (1.10). And since we
not just extend the theorem to different a’s, but also to more general spectral

intervals we define the number of relative nodes between m and n as
n—1
) (w0, u1) = Y #5(uo,uz) (1.26)
j=m

for all m < n. If there are no zeros of the Wronskian at the endpoints m and

n, then we have #i,, )(uo,u1) = —#{m,n(u1,u0), but otherwise we have to



distinguish the following cases: we set

1 if Wy (ug,u1) =0

#(m,n] (u07u1) - #[m,n] (uovul) - . (127)
0 otherwise,
1 if W, (ug,u1) =0

#[m,n) (u07u1) - #[m,n] (u07u1) + " . (128)
0 otherwise,

and

1 if Wm(uo,ul) =0

#(m,n) (’LL(),Ul) = #[m,n] (u07u1) - . (129)
0 otherwise

1 if Wn(uO,U1) =0

0 otherwise.

Note that we slightly changed the notation compared to [4]: #(, ) from [1] is

now denoted as # ;]

With these definitions in mind, we find the desired theorem which will appear

in [2]:

Theorem 1.5. Let ag,ay < 0, then

E(—OO721)(J1) - E(—oo,ZO](JO)
= #(0,n-1)(v0,+(20), u1,—(21)) = #(0,n-1)(u0,~ (20), u1,+(21)) (1.30)

and

B co,z1)(J1) = E(—00,29)(J0)

= #(o,n-1)(t0,+(20), u1,— (21)) = #(0,n—1)(u0,— (20), u1,+(21)),
E( 00,21 (J1) = E(—o0,201(J0)

= #0,8—1)(u0,+(20), u1,— (21)) = #o,N—1](v0,— (20), u1,4+(21)),  (1.31)
B c,211(J1) = B(—c0,2)(J0)

= #[O,Nfl)(uo,—&-(ZO%ul,—(zl)) = #[0,N71)(U0,—(Zo), u1,+(21))

holds for the Wronskian (1.24) with the weighting (1.25) if we set the additional
value ag(N — 1) = a1 (N — 1) < 0 to compute uj _(2;, N), where j =0,1.

The number of eigenvalues of J; in Q@ C R is Eq(J;), and uj +(z;) are solutions
fulfilling the right/left Dirichlet boundary condition of J;, that is uj4+(z;, N) =
uj—(2;,0) = 0.

Theorem 1.5 also sharpens Theorem 1.4 where we’ve counted one weight too



much, namely #x_1. Only therefore we’'ve set ag(N — 1) = a1(IN — 1), which
obviously doesn’t influence J and o(J), but the value w; _(z;,N), j = 0,1,
depends on it. However, if we drop this assumption, then we have to take the
weight at NV — 1 into account. We note that case in Theorem 4.6. On the other
hand, for a computation of u; 4 (z;,0) any negative values ao(0) and a;(0) will
do the job.

The proof of this theorem is based on the discrete Priifer transformation where
now the difference of the Priifer angle is put at the center of considerations since
it counts the relative nodes. This technique is presented in the chapters 3 and

4 and extends the one from [4].

Compared to [3, 4, 29, 30, 37], we present a simplified proof which eliminates
the need to interpolate between operators. This is of particular importance in
the present case, since ag < a; doesn’t imply the corresponding relation for
the operators. For this, simply look at the eigenvalues —e and e of the Jacobi

0 ¢
(6 O) (1.32)

which move in different directions as e increases. Hence, the interpolation step

matrix

would be more difficult since we cannot assume that the Priifer angle is non-
decreasing which is the key ingredient of the mentioned proofs. We refer to
the appendix for a computation of the derivative of the Priifer angle of a linear
interpolation of Jacobi matrices (for different Priifer transformations). This
demonstrates that the (suitably transformed) Priifer angle is strictly increasing
if the perturbation matrix is positive definite and extends the corresponding

formulas from [4, 46] to different a’s and b’s.
The proofs for regular Sturm—Liouville operators [29, Theorem 2.3] and reg-
ular Dirac operators [37, Theorem 3.3] can be shortened in the same manner

and both theorems can be extended to (half-)open and closed spectral intervals
analogously to (1.31), which is new. An adapted version of the Sturm-Liouville

case can already be found in the recent book [45].

For an extension of Sturm’s comparison theorem to relative nodes, we refer to
Chapter 6 and [2] (the case ap = a1 can be found in [3]). In contrast to the
Sturm-Liouville case [29], we don’t obtain a direct dependance on the coeffi-
cients of the operators as soon as we look at different a’s, but the theorem holds

if we assume Jy > J; instead.

Finally, from a linear algebra point of view we want to add the following (confer
therefore Chapter 5):

Sturm’s oscillation theorem also has a determinantal counterpart for hermitian
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matrices with nonzero (up to the rank of the matrix) leading principle minors:
it was found in C. G. J. Jacobi’s handwritten legacy (in terms of quadratic
forms) and posthumously communicated by Borchardt in 1857 [8]. Later, it has
been extended by Gundelfinger in 1881 [23] and Frobenius in 1894 [16], allowing
simple and two consecutive zeros in the sequence of leading principle minors,
respectively. A direct extension to three or more consecutive zeros isn’t possible,
therefore confer e.g. [31], where these theorems can also be found in terms of

determinants.

Applying the Jacobi-Gundelfinger theorem to Jacobi matrices, we easily obtain
Sturm’s oscillation theorem with the help of a formula which connects the so-
lutions of the JDE to the leading principle minors of the Jacobi matrix. This
moreover proves rigorously that the assumption ¢ < 0 can be weakened to
a # 0 if the definition of a node is slightly modified. Such a modification of the
definition of a node has already been suggested in [46].

Gantmacher and Krein’s proof of Sturm’s oscillation theorem for a < 0 used
the concept of Sturm chains to obtain the determinantal counterpart, confer
Theorem I1.1.7° in [18]; and in [52, 5.38] it has been deduced from the strict
separation of the eigenvalues, but I didn’t find a proof in the literature which is
based on Jacobi’s theorem (although Jacobi’s theorem applies to a larger class
of matrices).

It remains to remark that it seems to be more natural to look at the leading
principal minors of J — z instead of the solutions, since there the nodes can be
defined independently of the (sign of the) matrix elements.

As a special case thereof (hence going back to Gantmacher-Krein [18] and Ja-
cobi [8]) in my view the following should also be pointed out: in the Jacobi
case, Sylvester’s criteria for positive and negative definite symmetric matrices
extend to semi-definite matrices (which is well-known not to hold generally for
hermitian matrices). I didn’t find this note in the literature, although usually

(0 0), r <0, (1.33)
0 =z

which is a tridiagonal matrix, is stated as a counterexample for the general case,
e.g. in [6, 7, 17, 18, 32]. Hence, in Section 5.4 a short, self-contained proof is
presented which shows how this claim extends to the leading principal minors

of submatrices of arbitrary tridiagonal matrices.

It remains to mention that Theorem 1.5 of course also carries over to leading
principle minors of J — z and we state a rigorous theorem for the case ay = a1
in Chapter 5.
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As a concluding remark we want to mention that relative oscillation theory
has already been extended to Dirac operators in [37, 47] and to symplectic
eigenvalue problems in [11, 12, 13, 14] and several other extensions are thinkable,
e.g. to CMV matrices. Only recently, Simon Hilscher pointed out in [36] that an
extension to the case of Jacobi difference equations with a nonlinear dependance
on the spectral parameter would be of particular interest. Extensions to nodal
domains on graphs are currently in preparation and we hope that this work
will stimulate further research, e.g. to find new relative oscillation criteria and

eigenvalue asymptotics as in the Sturm-Liouville case [27, 28].
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Chapter 2

Preliminaries

In this chapter we recall some basic knowledge which we will frequently use in the
sequel, in particular the notions of spectra, resolvents, and operator convergence
for self-adjoint linear operators in Hilbert spaces will be introduced. For a more
comprehensive treatment we refer e.g. to [25, 33, 43, 49, 51] where the herein
recalled concents can also be found.

We further introduce Jacobi operators and have a closer look at their Green

functions, Weyl solutions and Weyl m-functions, therefore confer e.g. the mono-

graph [12].

2.1 Linear operators

Since the Jacobi matrices considered here are bounded self-adjoint operators in
£? we will mainly focus on the case of bounded operators in a separable Hilbert
space . Nevertheless, we introduce the basic concepts also for unbounded
operators, since, as we will see, many of the intermediate results can be obtained

for the unbounded case with almost no additional effort.

Definition 2.1. A linear operator A is a linear mapping A : D(A) — S where
the domain of A, 2(A), is a linear subspace of F. If the (operator) norm of
A

J

[All = sup [[Agl], (2.1)
elliel=1

is finite, then A is called bounded.

The set
L(H)={A: — A | sup |Ap| < oo} (2.2)

elliell=1

is a Banach space. If 2(A) = 4, then a bounded linear operator A can be
uniquely extended to a bounded linear operator A : J# — J# with the same
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bound by the B.L.T. theorem (Theorem 1.7 in [33]).

Definition 2.2. Let 2(A) = 7. The adjoint operator A* is given by

DA ) ={p e |V peP(A): e ()Ap)= (b))  (23)
A% = 9.
An operator A is called self-adjoint if A = A*.
Lemma 2.3. Confer Theorem VI.3 in [75]. We have

e A — A* is a conjugate linear isometric isomorphism of L () onto

L(A).
o (AB)* = B*A*
o (A) =4
o If A"l € L(H), then (A*)"1 € L(A) and (A*)~! = (A1),

Definition 2.4. The dimension of the range of A is called the rank of A, that
18
rank(A4) = dim Ran(A). (2.4)

An operator A € L(H) is called a finite rank operator if dim Ran(A4) < oo.

The range and the kernel of A are subspaces of 52 and the kernel of A* is the

orthogonal complement of the range of A, that is
Ran(A)* = Ker(A*). (2.5)

Hence, Ker(A) is closed, whereas Ran(A) isn’t necessarily closed.

Definition 2.5. The set of compact operators is given by

G () ={A e L) | dimRan(A) < oo}, (2.6)

where the closure is taken in the operator norm.

The Schatten p-classes,
Tp(H) ={A () | ||Allp < oo}, (2.7)

where
1Al = sup{(> {5, Av;) )7 | {¢,}, {v;} ONS} (2.8)
J
(the supremum over all orthonormal sets) denotes the p-norm of A, are Banach
spaces. We have

[A < [ Allp- (2.9)
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The space 73 () is called the space of trace class operators. If A is trace class,
then the trace of A,

tr(A) = Y (o5, Apy), (2.10)

J

is finite and independent of the orthonormal basis {¢, }. Moreover, by the Lidskij
trace theorem the trace of a trace class operator is the sum over all eigenvalues

counted with their multiplicity, see e.g. [43].

Definition 2.6. We call P € .£(5) where
P*=Pp (2.11)

a projection. If in addition P is self-adjoint we call P an orthogonal projection.

A projection P € £ () acts like the identity on Ran(P) which is a closed

subspace of .. An orthogonal projection P € Z () moreover acts like the

zero operator on Ran(P)*.

Remark 2.7. For a self-adjoint projection P we have
dim Ran(P) = tr(P) = || P||1- (2.12)

If P is not finite-rank, then all three numbers equal co.

2.2 Spectra and resolvents

For the herein recalled claims and definitions confer in particular the Sec-
tions VI.3, VIL3, and VIIL7 in [33].

Definition 2.8. Let A € ZL(5). Then, the resolvent set p(A) of A and the
spectrum o(A) of A are given by

p(A) = {2 €C | (A—2)"te L)), (2.13)
o(H) = C\ p(4) (2.14)

and the resolvent of A is the operator-valued function

Ra(2): p(A) = L() (2.15)
2 (A—2)7h
Now,
Ra(2)* = (A—2)""" = (A" — %)~ = Ry- (2%). (2.16)
By the inverse mapping theorem (confer e.g. Theorem III1.11 in [33]) the inverse

of a bounded linear operator from a Banach space onto a Banach space is
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bounded if it exists. Hence, suppose A € Z (), then z € p(A) if A — 2z
is bijective. Moreover, p(A) is open, ) # o(A) C Bj4)(0), and Ra(z) is an
analytic £ (¢)-valued function on each component of p(A).

Theorem 2.9. Confer Theorem 2.23 in []3]. Let A; be self-adjoint operators
on ;. Then, the countable orthogonal sum A = @;A; is self-adjoint,

o(4) = Ujo(4y), (217)
where the closure can be omitted if there are only finitely many terms, and
RA(Z) = @jRAj (Z) (2.18)

holds for all z & o(A).

Definition 2.10. Let ¢ € 52,4 # 0,z € C, such that

A = 29 (2.19)

holds, then 1 is called an eigenvector corresponding to the eigenvalue z of A.
The set of all eigenvalues of A is called the point spectrum o,(A) of A. The
multiplicity of an eigenvector ¢ is the dimension of the corresponding space of

eigenvectors. We denote the number of eigenvalues of A in an interval I as
E;(A).

If z is an eigenvalue of A, then A — z is not injective and hence 0,(4) C o(A).

Theorem 2.11. Confer Theorem VI.8 in [33]. If A is self-adjoint, then o(A) C

R and eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

Let Po(A) denote the family of spectral projections associated with a self-adjoint
operator A. We have, confer [33, Section VIIL.3],

z2€0(A) <= Pi_c.16)(A)#0 foralle>0. (2.20)

Definition 2.12. The essential spectrum oes5(A) and the discrete spectrum

ca(A) of A are given by

Oess(A) = {z € R | dimRan P._. .1, (A) = oo for all € > 0}, (2.21)
04(A) ={z€0(A) | dmRan P, _. .. (A) < oo for some e > 0}. (2.22)

We have
U(A) = Oess (A) U Ud(A) and Oess (A) N Ud(A) - @ (223)

The essential spectrum ocss(A) is closed in R, while o4(A) is not necessarily
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closed. We have
04(A) Co,(A) Co(A). (2.24)

Theorem 2.13. We have

z is a discrete point of o(A) and
z€0q(Ad) <= (2.25)
z is an eigenvalue of finite multiplicity.

Theorem 2.14 (classical Weyl theorem). Confer [73]. If A is self-adjoint and
C is compact, then
Oess (A) = Uess(A + C) (226)

In the next lemma we apply this theorem to our particular situation. Recall
that H and Hy are the Jacobi operators introduced in (1.5) and (1.7). Hence,
we see that our main assumption ag = a; and lim,| bo(n) = b1(n) ensures
that both operators have the same essential spectrum, we even have

Lemma 2.15. Let limj,|oo(a0 — a1)(n) = 0 and limj,| oo (bo — b1)(n) = 0,
then
Ocss(Ho) = Oess(H1)  and  0ess(HY) = 0css(HL). (2.27)

Proof. Consider

Hy, — Hy : 1*(Z) — *(7Z)
¥(n) = ((11 = 70)¥)(n)

and let (Ag)ken be a sequence of finite rank operators such that

((r = )¥)(n) if In| <k

0 otherwise.

(Ap)(n) =

By

lim ||Ak - (Hl — Ho)” = lim sup HAk'Q[] - (H1 - H(])w” =0
k=00 k=00 y|lp)|=1

the operator H; — Hj is the norm limit of a sequence of finite rank operators
and hence compact. Thus, oess(Hy) = 0ess(Ho + Hi — Ho) = 0ess(H1) by
the previous theorem. Moreover, Hi — HY is compact and hence oess(HY) =
Tess(HL). u

2.3 Operator convergence

The following can be found in Section 9.3 of [19] about operator convergence in
norm resolvent and strong resolvent sense.
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Definition 2.16. Let A,, A € L(). We say A, converges to A in norm,
resp. A, converges to A strongly,

A, — A, if le |A, — Al =0, resp. (2.28)
A, S A dif lim [|A, — A =0 for allp € H. (2.29)
n—oo

Definition 2.17. Let A,, A be self-adjoint operators (in Hilbert spaces). We

say A, converges to A in norm resolvent sense, resp. in strong resolvent sense,

nr
=
ST

A, = A, if R.(A,) — R.(A) for some z € T, resp. (2.30)
A, = A

. if  R.(A,) > R.(A) for some z €T, (2.31)
where ' = p(A) N (Npp(4y)).

If A,, converges to A in norm (strong) resolvent sense for some z € T', then A,

converges to A in norm (strong) resolvent sense for all z € T

Theorem 2.18. Confer Theorem VIIL.24 in [95]. Let A,, A be self-adjoint
operators and A, > A, then

z€o(A) = 3Tz, €0(A,) such that z, — z. (2.32)

Lemma 2.19. Confer Lemma 5 in [//]. Let Ay, A, be self-adjoint operators,
2_ < zy, and let A, 25 A, then

liminf tr(P_ . )(An)) 2 tr(P_2p)(4)). (2.33)
If moreover

limsup tr(P;_ ., )(An)) < tr(P_ 2,)(4)) (2.34)

n—roo
holds, then

nli}HQlo tr(P(z,,z+)(An)) = tr(P(z,,er)(A))- (2.35)
Proof. Equation (2.33) is shown in [19], Lemma 5.2. Clearly, (2.33) and (2.34)
imply (2.35). O

Definition 2.20. Let A be closeable and let Dy be a linear subspace of Z(A),

then we say Py is a core of A if A|g, is an extension of A.

If A is closed, then A|g, = A. If A € £ (), then every dense linear subspace
of 2 is a core of A. In the case of bounded operators norm (strong) convergence

implies norm (strong) resolvent convergence, see [43] and

Theorem 2.21. See Satz 9.22 in [/9]. Let A,, A be self-adjoint operators in
€. Then,
A, 5 A
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if one of the following conditions holds:

a there is a core 9y of A such that to everyp € 9Dy there exists an ng = ng(Y) €
N such that ¢ € P(A,) for n = ng and An) — Ay as n — oo.

b we have A,, A € L(H) and A, > A.

2.4 Green function and Weyl solutions

Now we have a closer look at the resolvents of Jacobi matrices, confer [12].
Therefore, let §; be the sequence §,(i) = d;; where d;; denotes the Kronecker
delta and recall H and Hy from (1.5) and (1.7).

Definition 2.22. For all z € p(H) the resolvent G(z) = Ry (z) = (H — 2z) ! is
given by an infinite matrix
G(2) : 12(Z) — *(7) (2.36)
Y (H = 2)7 .
The matriz elements of G(z), where the element at the m-th row and the n-

th column is denoted by G(z,m,n) = (6, (H — 2)718,), are called the Green

function.

Lemma 2.23. The Green function fulfills

G(z*,m,n) = G(z,m,n)", (2.37)
G(z,m,n) = G(z,n,m), and (2.38)
(H = 2)G(z,-,n) = 0,(-), (2.39)

where G(z,-,n) denotes the n-th column of G(z).

Proof. By (2.16) we have
G(2)* = Ry (2)" = Ry~ (") = Ru (") = G(z").

Let A" denote the transpose of A. Then, the second claim follows from

hence G(2)T = G(z). For the last claim consider (H — 2)G(z) = 1. O
The next lemma can be found on p. 6 in [12] and moreover follows from (3.5).

Lemma 2.24. Let u,u be solutions of Tu = zu, then the Wronskian
Wi (u, @) = a(n)(u(n)a(n + 1) —u(n + 1)a(n))
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is constant. Moreover, W (u, @) vanishes iff u and @ are linearly dependent,

i.e. there exists an o € R, # 0, such that au = 1.

Lemma 2.25. If z € 0.5s(H), then there exist solutions
ux(z) € £2(£N) (2.40)

of T — z which are unique up to a multiple (and square summable near £00).
Those solutions are called Weyl solutions. Moreover, the eigenvalues of H are

simple.

Proof. If z & 0ess(H), then z € p(H) or z € oq(H).
If z € p(H), then the resolvent G(z) exists and all columns (and hence by
symmetry all rows) of G(z) are in £2(Z) by Lemma 2.23:

G(z,-,n) = Ry(2)d, € (*(Z).
Those ¢, = G(z,+,n) are solutions of 7 — z at j < n and j > n by

(T = 2)én)(j) = 0.

Choosing initial values ¢, (n + 1) and ¢,,(n + 2) we obtain a solution uy ,,(2) €
¢(Z) of T — z which is square summable near co. Now, let u4(z) be another
solution of 7 — z in ¢?(N), then by Lemma 2.24 the Wronskian of u; ,,(2) and
u4(2) is constant and hence vanishes by
nl;rrgo Wi (ug n(2),us(z)) =0.

Thus, by Lemma 2.24 the solution u4(z) is a constant multiple of w4 ,(2).
Analogously, we obtain a solution u_ ,,(z) of 7 — z which is square summable
near —oo by choosing initial conditions ¢, (n — 1) and ¢, (n — 2).

If z € 04(H), then z is an eigenvalue of H by (2.24) and hence there exists a
solution of 7 — z in ¢?(Z), namely the corresponding eigensequence 9(z). Let
u4(z) and u_(z) be solutions of 7 — z which are square summable near +o0o (or

an eigensequence of H corresponding to z), then again by Lemma 2.24 and

lim W, (us(2),¥(2)) =0

n—=+oco

the Weyl solutions are a constant multiple of 1. Hence, the eigenvalues of H

are simple. O

The spectra of H; and H_ are also simple, confer therefore Chapter 3 in [12],
and we have
Oess (H) = Uess(H+) U O'ess(H—)- (241)
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Hence, the discrete spectrum of H is the set of all discrete points of o(H) and
Oess(H) is the set of all accumulation points of o(H). The same holds for the
spectra of Hy and H_. And if [z_, 2, |N0oess(H) = 0, then Ep, . (H) is finite.
Now, we state the resolvents explicitly:

Lemma 2.26. Let z € p(H), then the Green function is given by

u_(z,m)us(z,n) if

us(z,m)u_(z,n) if

n,

G(z,m,n) = W(u_(2),us(z)" (2.42)

VoA

m
mz=n,

where uy(z) denote the Weyl solutions of T — .

Proof. We show that (2.42) fulfills
(H—-2)G(z) =1

for all entries of I. Therefore, we abbreviate ux = uy(z) and observe that we

have

a(m —1)G(z,m — 1,n) + (b(m) — 2)G(z,m,n) + a(m)G(z,m + 1,n)
W () (g (Wa(mu (04 1) + a()us (1 + Du(n)) = 1.

at the diagonal (m = n). At the upper triangle (m < n) we have

a(m —1)G(z,m — 1,n) + (b(m) — 2)G(z,m,n) + a(m)G(z,m + 1,n)
= W, ug) ™ (s () a(m — D (m — 1)
T (b(m) — 2)u_(m) + a(m)u_(m +1))) = 0

and at the lower triangle (m > n) we have

a(m—1)G(z,m — 1,n) + (b(m) — 2)G(z,m,n) + a(m)G(z,m + 1,n)
=W (u_,uy) " (u-(n)(a(m — Duy(m —1)
+ (b(m) = 2)uy (m) + a(m)uy (m +1))) = 0.

O
Now, look at the following Jacobi matrices with variable base points: let
b(m+1) a(m+1)
alm+1) b(m+2) .
Hyn = (2.43)

a(n —2)

a(n—2) b(n—1)
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be the finite Jacobi matrix with base points m, n (which we’ll omit whenever a
base point equals 0) in 4(m,n) = ¢({n € Z | m < n < n}), where n — m > 2.
And analogously let

Hyy 2 £%(m, 00) — £2(m, 00)

(Hon 1 16)(n) = b(n)y(n) + a(n)p(n+1) %f n=m+1 (2.44)
(T¢)(n) ifn>m+1
be a Jacobi matrix in the upper half-line and
H_,:0?(—o00,n) = (*(—o0,n)
(H_ib)(n) = b(n)y(n) +a(n — )p(n —1) ?f n=n-—1 (2.45)
() (n) ifn<n-1

a Jacobi matrix in the lower half-line.

Lemma 2.27. Fixm € Z and let z € p(Hp, +), then the Green function is given
by

Um(z,m)uy(z,n) if m < n,
<

u+(z,m)¢m(z,n) an

Gm,-ﬁ-(zvman) - W(wm(z)vu-k(z))il {

where uy(z) is a Weyl solution of T — z and ¥ (2) denotes a solution fulfilling

Ym(z,m) = 0.

Proof. We show that (2.46) fulfills (Hm + — 2)Gm,+(2) = I for all entries of I.

Abbreviate uy = u(z), then, at the first entry (m = m + 1 = n) we have
(b(m) — )G+ (1, 1) + (1) G 1 (. + 1,1)

= W (s 1)~ (U (1) ((b(m) — ) (m) + a(m)uus (m + 1))
— W (s,us) " a(m)us (m)dn(m+ 1) = 1

and at the rest of the first row (m = m+ 1 < n) we have

(b(m) — 2)Gon,4 (m, ) + a(m) G, (m + 1,m)

w1 e (m . .
_W(¢m7u+)((b( +1) = 2)hm(m+1) + a(m + 1)thp(m +2)) = 0.

Now, consider all other rows of I, that is m > m + 1. Then,

a(m —1)Gm+(m—1,n) + (b(m) — 2)Gm +(m,n) + a(m)Gm +(m + 1,n)
= W (¢hm, uy) " (a(n)uy (n + 1)pm(n) — ug(n)a(n)m(n + 1)) =1
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at the diagonal (m +1 < m = n) and

a(m —1)Gm+(m —1,n) + (b(m) — 2)Gm +(m,n) + a(m)Gm +(m + 1,n)
= W () (s () @ — (i — 1)
+ (b(m) = 2)m(m) + a(m)Pm(m +1))) = 0

at the upper triangle (m+1 < m < n). At the lower triangle (m+1 < m > n)

a(m — 1) G+ (m — 1,1) + (b(m) — 2)Grm 1 (m, 1) + a(m) G (m + 1, 1)
=W (¢hm, uy) ™ (Ym(n)(a(m — uy (m — 1)
+ (b(m) — 2)us.(m) + a(m)uy (m+1))) =0
holds. O

Analogously we find

Lemma 2.28. Fizn € Z and let z € p(H_ ), then the Green function is given
by

G—,n(zvman) = 7W(wn(z)7u—(z))il {

Un(z,n)u_(z,m) if m < n,
<

u_(z,n)¥n(z,m) ifn

where u_(z) is a Weyl solution of T — z and ¥ (2) denotes a solution fulfilling
Yn(z,n) = 0.
Lemma 2.29. Fiz m,n and let z € p(Hp,n), then the Green function is given

by

Um(z,m)hn(z,m) if

Gmn(z,m,n) = W(Wm(2),¥n(z -1
( ) (Ym(2), ¥n(2)) {wn(Z,m)wm(Z,n) "

where Y, (2) is a solution fulfilling Ym(z,m) = 0 and 1,(2) is a solution fulfilling
Yn(z,n) = 0.

Proof. At the first row (m = m + 1) we have

(b(m+1) —2)Gma(m+1,n) +a(m+ 1)Gma(m+2,n) = 6 mt1

(bm+1) —2)Gma(m+1,m+1)+a(m+1)Gma(m+2,m+1)
= (a(m)dm(m + 1)¢ha(m)) ™ ¢m(m + )a(m)in(m) = 1
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and

(b(m+1) —2)Gma(m+1,n) +a(m+1)Gnn(m+2,n)
=W (%m, ¥n) " ((b(M + 1) = 2)¢m(m + 1)¢n(n)
+ a(m + 1)¢m(m + 2)¢n(n))
= =W (¢m, ¥n) ' hn(n)a(m)pm(m) = 0

if n > m+ 1. At the last row (m = n — 1) we have
a(n —2)Gma(n—2,n) + (b(n —1) — 2)Gmn(n —1,n) = 0y n_1
and in between (m + 2 < m < n — 2) we have
a(m —1)Gmn(m —1,n) + (b(m) — 2)Gmn(m,n) + a(m)Gma(m+1,1n) = 5y p.

Thus, (Hyn — 2)Gmna(z) =1L O

2.5 Weyl m-functions

Finally, the concept of Weyl m-functions for Jacobi operators is briefly recalled.
We use this concept in Section 8.3 which in turn is necessary for the proof of

our main theorem above the infimum of the essential spectrum.

Definition 2.30. Let z be in the respective resolvent set, that is, z € p(Hm +),
z2 € p(Hmn), or z € p(H_ ). Then,

)

my(z,m) = Omit, Hnt —2) 0mi1) = Gmy(z,m+1,m+1), (2.47)
m_(z,n) = (6n_1, (H_p—2)"'60_1) = G_n(z,n —1,n—1), (2.48)
m% (z,m) = (6mi1, (Hmn — 2) 0mi1) = Gmalz,m+ 1,m + 1), (2.49)
m™(z,n) = (On_1, (Hmn —2) " 0n_1) = Gmn(z,n —1,n — 1) (2.50)

are the Weyl m-functions.

We already know from our previous considerations that the Weyl m-function can
be expressed in terms of solutions fullfilling the right/left boundary condition

of the corresponding operator:

Lemma 2.31. If z is in the respective resolvent set, p(Hm +),p(Hmn), or
p(H- ), then

ma(em) =~ EE B ()] < e =27
m_(zn) =~ 4= 1) m_ (2] < |(Hon — )7

a(n — Du_(z,n)’
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~ Ya(z,m+1)

a(m),(z,m)’
Ym(z,n—1)

a(n — 1)tpm(z,n)’

Proof. By Lemma 2.27 and ¢, (z,m) =0

n

m’ (z,m) = % (2, m)| < [[(Hin = 2) 7,

m?(z,n) = — m™ (z,0)| < [|(Hamn — 2) 7.

mi(z,m)=Gmni(z,m+1,m+1)
= W(Wn(2), w4 (2)) " (2, m + Duy (z,m + 1)
_ ug(em+1)

~ a(m)ug(z,m)

holds and by Lemma 2.28 and t,(z,n) = 0 we have

m_(z,n) =G_,(z,n—1,n—1)
= —W(n(2),u_(2)) *n(z,n — Du_(z,n = 1)
u_(z,n—1)
a(n — Du_(z,n)’

By Lemma 2.29 and s™(z,m) =0

m! (z,m) = Gma(z,m+1,m+1)

- W(wm(z)a @/}n(z))ilwm(zv m + 1)1/41(2, m + 1)
_ Un(z,m+1)
a(m)in(z, m)

holds and by s" (z,n) = 0 we have

m™(z,n) = Gua(z,n—1,n—1)

= W(wm<z)a QlJn(Z))_ll/)m(Z, n— l)wn(za n— 1)
Ym(z,n —1)
a(n — 1)¢m(z,n)

O

If we have strong resolvent convergence, then of course also the corresponding

Weyl m-functions converge (provided the resolvents exist):

Lemma 2.32. Fiz some m € Z. If, as n — oo, m/.(z,m) correspond to a

sequence of Jacobi matrices Jp, in £(m,n) such that J, & Al = Hpy 4+, then

lim m% (z,m) =my(z,m) (2.51)

n— oo

for all z € p(Hm +) Ny p(Jy) where z # A.
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Now, fix some n € Z. If, as m — —oo, m™(z,n) correspond to a sequence of
Jacobi matrices J, in €(m,n) such that X1 & J,, = H_ ,, then

lim m™(z,n) =m_(z,n) (2.52)

m——0o0
for all z € p(H_ n) Ny p(Jpn) where z # A.

Proof. By Ry, g¢x(z) = Ry, (2) ® R(2)

nh—>Holo mi(z, m) = nh_{glowm-ﬁ-l’ (Jn - Z)_15m+1>

= Tim (1, (Jo & AL — 2)  omi1)

n

= (Omt1, (Hm,+ — 2)" my1) = my(z,m).

holds and by Rags,, (2) = Rar(2) ® Ry, (2) we have

; m _ : _ N1
ml_l}H_loo m™(z,n) = mgriloo@n,l, (Jm — 2) " " 0n—1)
= lim Gy 1, NI® Jp — 2) 260_1)
m——0o0

= (6n_1, (H_ ;, — 2) 10n_1) = m_(2,n).
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Chapter 3

Weighted nodes

In this chapter we introduce the Wronski determinant and its basic properties,
in particular the ’derivative’ along the Z-axis, see (3.5). We then recall some
facts about the Priifer transformation of solutions of Jacobi difference equations,
confer e.g. [12], which we extend (in the last section) to a detailed investigation
of the difference A of two Priifer angles. We show that A counts the number
of nodes of the introduced Wronskian which extends the considerations from [4]

to the present more general case.

3.1 Wronskian

At first we look at the Wronskian and establish a few formulas which will be

very helpful in the sequel.

Definition 3.1. Let D denote the space of difference equations. We define the
(modified) Wronskian or Casorati determinant as
W :D? x U(Z)* — ((Z) (3.1)
(TO7 71, ¥ w) = W (QO, w) = (W:L'O’Tl (4107 w))nEZ
= (p(n)ar(n)yp(n + 1) — P(n)ao(n)e(n +1))nez

:< p(n) Y(n) ) |
nez

ag(n)e(n+1) ai(n)v(n+1)
This definition generalizes the one from [4] to different a’s. The corresponding

difference equations will be evident from the context and thus we’ll abbreviate
W (@, 1) = W™ (p,1)). The Wronskian has the following properties:

e W70 (p ) vanishes

o Wrom(p, ) = =W (¢, @)
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o Wi (cp,p) = W (p,¢ ) = c W (, 1))
o WO (g + 3,9) = WO (p,90) + W™ (5,4))
o WO (0,40 +1b) = WO (g, ) + W™ (ip,4))

for all c€ R and ¢, 3, ¥, ¢ € ¢(Z). From now on we abbreviate
Aa=ag—a; and Ab=1Dby—b;. (3.2)

Lemma 3.2 (Green’s formula). We find

Z(so(mp) — P(1090))(§) = Win (0, ¥0) — W1 (,%) (3.3)

m

Z Aa(i) (G + D) + e + 1) = > Ab(i)e(i) ().

j=n—1 j=n

Proof. We have

== 3 MGG )+ el D) ~ 3 A

—ar(n = 1y(n)p(n —1) + ao(n — 1)p(n)y(n — 1)
+ar(m)p(m + 1)p(m) — ao(m)e(m + 1)y (m).

O

In particular this 'derivative’ is the key ingrediant of many of our forthcoming
observations.

Corollary 3.3. Let (1, — z)u; =0, j = 0,1, then

Wi (ug, 1) — Wi 1 (ug, ur) (3.4)
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=

m—

= Aa(j)(uo(f + V)ur () + uo()ua(j + 1)) + Y Ab()uo(f)ua (4),

j:n—l J:’I’L
for allm > n and

Wi (o, ur) — Wi—1(uo, u1) (3.5)
= Aa(n — 1) (up(n)ur(n — 1) + ug(n — Dur(n)) + Ab(n)ug(n)ui(n).

Hence, if v and @ solve Tu = zu, then W (u, @) is constant (and vanishes iff u
and @ are linearly dependent), confer Lemma 2.24.

Lemma 3.4. Let (1; — 2)u; =0, j = 0,1, and u; = (uj,uj') € U(Z,R?), then

Wn+1(u0,u1) — Wn(uo,ul) = <g0(n), (Aao(n) AbA(Z(j—)l)> Uy ('ﬂ)> (36)

Proof. By (3.5) we have

<< ug(n) > ( 0 Aa(n) )( ui(n) >>
up(n+1)) "\ Aa(n) Ab(n+1)) \ui(n+1)

_ ug(n) Aa(n)ui(n+1) >
ug(n+1) ) "\ Aa(n)ui(n) + Ab(n + 1)uy(n + 1)
= Wit1(uo, ur) — Wy (uo, u1).

O

Note that alternatively another definition for the Wronskian could be used which
we now mention briefly. And further, in the appendix we will use it to simplify
a few of the computations.

Remark 3.5. Consider
M :D? x U(Z)* — ((7Z) (3.7)
(7_03 T1, ¢7 1/’) = MTO’TI ((bv 7/})3

where

M (h,4) = p(n)ag(n)(n + 1) — p(n)ar(n)(n + 1) (3:8)

ap(n)p(n) ai(n)y(n)
dn+1)  Yn+1)|

Then, for all n < m, we have

WTOTH (p,1h) = M™7 (9, 1)), (3.9)
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D (@(rv) — ¥(r00))(5) = D (W (b, 4b) — M (6,) — Ab(5)$(7)¢(5)),

j=n j=n

and, if Tju; =0, j = 0,1, then

> Wiuo,ur) =Y (Mj_1(ug,ur) + Ab(j)uo(5)ua(5)) (3.10)

and
W (ug,u1) = Mp—1(ug, u1) + Ab(n)ug(n)uy (n). (3.11)

The following two lemmas will be very helpful in the sequel, in particular in the

approximation as well as for our considerations on finite-rank perturbations.
Lemma 3.6. Let a = ag = a1 and ¢, € (*>(£N), then
W(¢,v) € £*(£N) C £?(£N). (3.12)

Proof. Let ¢T(n) = ¢(n + 1) and ¥+ (n) = v(n + 1), then the component-
wise products ¢ T, ¢t € (1 (£N) are summable by Holder’s inequality and we
further have W (¢, %) = a(¢pyp™ — ¢p™) € £1(£N) by a € £>°(N). O

Lemma 3.7. Let u;(A;),j = 0,1, be solutions of (1; — Xj)u;(A;) = 0 where

agp = ayi. Then,

Wj(uo(Xo),u1(A1)) =0 for all j =m,...,n (3.13)
— FJa#0:uo(N,j) =aui(A1,j) forallj=m,...,n+ 1.

If so, then either
bo(j) = Ao =b1(j) = A1 or we(j) =ui(j) =0 (3.14)
holds for all j=m—+1,....n

Proof. By Wj(uo,u1) = a(j)(uo(j)ui(j +1) —ui(j)uo(j + 1)) = 0 for all j =
m,...,n, we have up(j) =0 <= wuy(j) =0 for all j =m,...,n+ 1. Moreover,
by

Wi(uo,u1) — Wi—1(uo, u1) = (bo(j) — Ao — (b1(4) — A1))uo(d)ui(j) =0 (3.15)

we have either

b()(j)*)\():bl(j)fAl or UO(]) :’ul(j) :0 (316)
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forall j =m+1,...,n. Without loss, let ug(m) # 0, then uo(m) = auy(m) and
ug(m + 1) = auy(m + 1) where o = Z‘l’gg by W, (ug,u1) = 0. The inductive
step: by (3.14) we have

uo(j +1) = —a(j) " (a(j — Duo(j — 1) + (bo(j) — Ao)uo(4))
= —a(j) " Ma(j — Daus(j — 1) + (b1(j) — Ar)aus (§)) = oy (j + 1)

for all j =m+1,...,n, hence the solutions are linearly dependent. O

3.2 Discrete Priifer transformation

Now the discrete Priifer transformation will be introduced. Therefore at first

recall that n is a node (sign-change) of u if
un)=0 or wu(n)u(n—+1)<0 (3.17)

and as usual we call 7 (and also u) oscillatory if one (and hence all) solutions of
7u = 0 have infinitely many nodes. The number of nodes of u between m and I,
#(m,)(u), is the number of nodes n of u where either m < n <1 or n =m and
u(m) # 0 holds.

Remark 3.8. The number of nodes of u doesn’t change if we drop the zeros in
the sequence u (which is sometimes done in the literature) or replace them by
any other value, since, as we will see, any solution u of Tu = zu changes its

sign around zeros. Of course the nodes then appear at other positions.

Lemma 3.9. Let u be a solution of (1.1) and u(n) =0, then
u(n — Du(n+1) <0. (3.18)
Proof. Since all zeros of u are simple

u(n+1) = —a(n) " (a(n — 1) u(n — 1) + (b(n) — 2)u(n)) # 0
>0 <0 =0

holds. O

Thus, by (u(n), u(n+1)) # (0,0) for all n € Z, the Priifer variables p,,, 0, € ¢(Z)
are well-defined: let

u(n) = py(n)sinb,(n), (3.19)
—a(n)u(n + 1) = pu(n) cos by, (n),
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so that p, > 0, fix 0, (ng) € (—m, 7] at the initial position ng, and assume
[0,(n)/m] < [0u(n+1)/7] < [0,(n)/7] +1 (3.20)

for all n € Z, then both sequences are well-defined and unique.

As in [29] we also use the slightly refined (compared to [4, 42, 46]) definition of
Priifer variables by taking the secondary diagonals a into account. By —a > 0
this will not influence the herein recalled well-known claims on the nodes of
solutions, but it simplifies our calculations as soon as we look at the nodes of
the Wronskian.

From now on let u be a solution of 7 and p, 0 € ¢(Z) be the corresponding Priifer
variables.

Lemma 3.10. Fiz some n € 7Z, then there exists some k € 7Z such that

On)=kr+~, 6(n+1)=kr+T, (3.21)
where
~ € (0, g], I'e (0,71] <= n isnotanode of u, (3.22)
v e (g,ﬂ'], I'e(m2r) <= nisanodeofu (3.23)
holds. Moreover,
b(n) =kt +3 < On+1)=(k+ D) (3.24)

Proof. Choose k € Z such that 8(n) = kr + v, v € (0,7] holds. By (3.20) we
have I' € (0, 27]. If u(n)u(n + 1) # 0, then sin~ycos~y > 0 iff n is not a node of
u and sinycosy < 0 iff n is a node of u, hence (3.22) clearly holds for v. By
sinI" cosy > 0 we have sinI" > 0 iff n is not a node of v and sinI" < 0 iff n is a
node of u, thus, (3.22) also holds for T'.

Now, suppose we have u(n + 1) = 0, then n is not a node of u and either I' = 7
or I' = 27 holds. By Lemma 3.9 we have u(n)u(n + 2) < 0, hence

sin@(n)cosf(n +1) = (—1)*siny(—1)¥ cosT < 0.

Thus, by cosI' < 0, we have I' = 7. From —a(n)u(n+1) = p(n) cosf(n) = 0 we

conclude that (—1)* cosy = 0, thus v = % and hence (3.22) and (3.24) hold. If

u(n) = 0, then n is a node of u, ¥ = 7, and (3.22) holds by sin #(n+1) cos§(n) >
0,i.e. (=1)*sin'(—=1)¥ cosy > 0. O

In the sequel we’ll frequently use the floor function

z— |z] =max{n € Z|n < z}, (3.25)
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a right-continuous step function, and the ceiling function
z+— [z] =min{n € Z|n > z}. (3.26)

We moreover remark that « — [2] — 1 is a left-continuous analog of (3.25).

Corollary 3.11. For all n € Z we have

[0(n)/m]+1 ifn is anode of u,
O(n+1)/7| = 3.27
16 /] [0(n)/m] otherwise. (3:27)

Now we are able to count nodes of solutions of the Jacobi difference equation

using Priifer variables and the number of nodes in an interval (m,n) is given by

Theorem 3.12. Confer Lemma 2.5 in [/0]. We have

#(mn) () = [Ou(n) /7] = [Ou(m)/7] — L. (3.28)

Proof. We use mathematical induction: let n = m + 1. Then, if u(m) = 0,
u(n) # 0 we have #,, ,)(u) = 0 and by Corollary 3.11

[0u(n)/m] = [0u(m +1)/7] = [0u(m)/7] + 1 = [0u(m)/7] +1
€z
holds. If w(m) # 0 holds, then by Corollary 3.11 we have

[0u(n)/m] —2 if m is a node

|0, (m) /7| = [0,(m)/7] —1 = [0,(n)/7] —1 otherwise.

¢z

The inductive step follows again from Corollary 3.11. O

3.3 Difference of the Priifer angles
Again, let u;,j = 0,1, be the solutions of 7; — z with initial values
uj(n;),uj(n; +1), where n; € Z, (3.29)

and let p;,8; € ¢(Z) be the corresponding Priifer variables as introduced in
(3.19). From now on, without loss, we assume that uo and u; correspond to the
same spectral parameter z, therefore just notice that we can always replace by

by b1 — (21 — 20). We abbreviate the difference of the Priifer angles as

A=Ay, =0, — 0 € U(Z) (3.30)
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and adopt Lemma 3.13 and Lemma 3.14 from [4]:

Lemma 3.13. Confer [}]. Fiz some n € Z, then there exist k; € Z,j = 0,1,
such that

0;(n) = k;m+;, v, € (0, ], (3.31)
Hj(n+1):kj7r+l"j, FjE(O,Qﬂ'),

where

(1) either ug and uy have a node at n or both do not have a node at n, then

m™ T

5 2) and T'y —Tg € (77T,7T). (332)

71— € (

(2) uy has no node at n, but uy has a node at n, then
Y1 —"7 € (—7,0) and T7—Tg € (—2m,0). (3.33)

(3) uy has a node at n, but ug has no node at n, then
11— € (0,7) and T3 —T9 € (0,2n). (3.34)
Proof. Use Lemma 3.10. O

Lemma 3.14. Confer []]. We have

[A(n)/m] =1 < [A(n+1)/7] < [A(n)/7] + 1. (3.35)

Proof. Let k = k1 — kg, n € Z, then by Lemma 3.13 we have either

A(n) € (kw—g,kmg) and A(n+1) € (kr — 7, kr + ),
A(n) € (km —m, k) and A(n+1) € (kr —2m,km), or
A(n) € (km, kr + ) and A(n+1) € (km, k7 + 2m).
In each case the lemma holds. O

Now we point out a few small lemmas which we need to relate the difference of

the Priifer angles to the nodes of the Wronskian in the next step.

Lemma 3.15. We have

Wi (ug,u1) = po(n)p1(n)sin A(n), (3.36)
Wi (1o, u1)ug(n + 1)ug(n + 1) = psin(y1 — o) cos vy cos 71, (3.37)
Wt1(uo, ur)ug(n + 1)ug(n+ 1) = psin(I'y — T'y) cosyo cosyi, (3.38)
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where p,p > 0.

Proof. We have

Wi (ug, u1) = ug(n)ai(n)uy(n + 1) — ug(n)ag(n)ug(n + 1)
po(n)p1(n)(—sinby(n) cos by (n) + sin by (n) cos Hy(n))
= po(n)p1(n)sin(01(n) — 0o(n))
po(n)p1(n)

o(n)p1(n)(=1)" "  sin(y1(n) = 70(n)).

(0]

_ po(n)?pi(n)* 5 — po(m)pr(n)po(nt)pr(ntl)
The claim now holds with p = W and p = £o2EL ao(ﬁ)al(n) L O

Lemma 3.16. We have

uwn+1)=u(n+1)=0 = Wy(ug,u1) = Wyi1(ug,u1) =0,
up(n+1) =0,u1(n+1)#0 = Wy (uo,u1)Wyi1(uo,u1) >0,
UO(TL + 1) 7& O,U1(TL + 1) =0 == Wn(uo,ul)Wn_,_l(uo,ul) > 0.

Proof. The first claim holds obviously. For the second claim just observe that,

by Lemma 3.9,

Wn("u,(), ul)Wn+1(u0, ul) (339)
= —ug(n)ug(n + 2)ag(n + Dai(n)uy(n +1)* > 0

ifugp(n+1) =0,u;(n+1) # 0 and

Wi (w0, u1) W1 (uo, ur) (3.40)
= —ui(n)uy(n + 2)ag(n)ay(n + Dug(n +1)* >0

if uo(n + 1) # 0,us(n + 1) = 0. O

We extract the following small corollary since we will frequently apply it in the
sequel.

Corollary 3.17. We have

W (uo, u1) Wi (uo,u1) <0, or
Wi (ug,u1) = 0, Wyi1(ug,u1) #0, or = wo(n+ Dus(n+1) #0.
W (uo, u1) # 0, Wyy1(up,u1) =0

Moreover, Aa(n) # 0 or Ab(n + 1) # 0 holds.

For the convenience of the reader we abbreviate

(+1) if [A(n+1)/7]=[An)/7] +1,

35



0) if [A(n+1)/7] = [A(n)/x], and (3.41)
(—1) i A+ 1)/7] = [A(n)/x] - L.

Now we'’re ready for a major step in the proof of Theorem 1.5:
Lemma 3.18. Letn € Z, then
(+1) <= Wyt1(ug,u1)ug(n + ui(n+1) > 0 and
either W, (ug, u1) W41 (uo,u1) <0 (3.42)

or Wy (ug,ur) =0, Wy41(ug,ur) # 0,
(—1) <= Wy (ug,u1)up(n+ )ui(n+1) >0 and

either Wi, (ug, u1) W41 (ug,u1) <0 (3.43)
or Wy (uo,u1) # 0, Wy (ug,u1) =0,
(0) <= otherwise. (3.44)

Proof. It (41), then we either have case (1) of Lemma 3.13 and v — y9 €
(=5,0,,T'1 =Ty € (0,7) or we have case (3) of Lemma 3.13 and v — 7 €
(0,7),T'y — Ty € (m,27). Clearly, by (3.36), in either case we have

Wi (uo, ur) Wi (uo,ur) <0 or Wy (ug,u1) = 0, W1 (uo, u1) # 0.

Hence, by Corollary 3.17 we have ug(n+ 1)ug(n+ 1) # 0, thus cos~yg cosvy; # 0.
In case (1) of Lemma 3.13 we have sin(I'y — I'g) > 0 and cos~yycosy; > 0 by
Lemma 3.10. Hence, by (3.38) W41 (uo,u1)ug(n + 1)uz(n+ 1) > 0 holds. In
case (3) of Lemma 3.13 we have sin(l'y — T'g) < 0 and cosypcosy; < 0 by
Lemma 3.10. Hence, by (3.38)

W1 (ug, ur)ug(n + Dug(n+1) >0

holds.

If (—1), then we either have case (1) of Lemma 3.13 and 71— € (0, 5),T'1—T €
(=, 0] or we have case (2) of Lemma 3.13 and 71 — 79 € (—7,0),I'y =Ty €
(=27, —m]. Clearly, by (3.36), in either case we have

Wn(uo, ul)Wn+1 (uo,ul) <0 or Wn(uo,ul) 75 0, Wn+1 (uo,ul) =0.

Hence, by Corollary 3.17 we have ug(n+ 1)ug(n+ 1) # 0, thus cos~yg cosvy; # 0.
In case (1) of Lemma 3.13 we have sin(y; — 7o) > 0 and cos~yycosy; > 0 by
Lemma 3.10. Hence, by (3.37) Wy, (ug, u1)uo(n + 1)ui(n+ 1) > 0 holds. In case
(2) of Lemma 3.13 we have sin(vy; —7p) < 0 and cos vy cosy; < 0 by Lemma 3.10.
Hence, by (3.37)

Wi (ug, ur)ug(n + ui(n+1) >0
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holds.
On the other hand, if W, (ug, u1)Wpi1(ug,u1) < 0 by (3.36) we have either
(4+1) or (—1). If, use (3.37),

W (uo, ur)ug(n + Dug(n+ 1) = psin(y1 — 740) cosyo cosy1 > 0,

then we have either case (1) or case (2) of Lemma 3.13 and in each case we have
(0) or (—1). Hence,

Wn(UO, ul)Wn+1(u0, Ul) <0 and Wn(UO, ul)uo(n + 1)’LL1(TL + 1) >0,
thus, (—=1). If, use (3.37),
W (uo, ur)ug(n + Dug(n+ 1) = psin(y; — 40) cosyp cosy1 < 0,

then we have either case (1) or case (3) of Lemma 3.13 and in each case we have
(0) or (+1). Hence,

Wn(uo,ul)Wn+1(uo, ul) <0 and Wn+1(u0,u1)u0(n + l)ul(n + 1) >0,

thus (+1).

If W, (ug,u1) =0, Wyy1(ug,u1) # 0, then we have case (1) of Lemma 3.13 and
cosyp cosy1 > 0 by Corollary 3.17. Thus, if Wi, 41 (ug, u1)ug(n+1)us(n+1) > 0,
then (3.38) implies sin(I'y —T'g) > 0, thus, (+1) holds by case (1) of Lemma 3.13.
If Wy (uo,ur) # 0, Wyy1(uo, u1) = 0, then cosvygcosy; # 0 by Corollary 3.17.
If moreover W, (ug, u1)ug(n+ 1)ui(n+1) > 0 holds, then by (3.37) cos g cos 1
and sin(vy; — 7g) are of the same sign. Hence, we have case (1) of Lemma 3.13
and (—1) or case (2) of Lemma 3.13 and (—1).

Thus, (3.42) and (3.43) hold and clearly by Lemma 3.14 we have (0) otherwise.

O
Now we easily get the desired relation: from Lemma 3.18 we conclude

#n(uo,u1) = [A(n+ 1) /7] — [A(n) /7], (3.45)

#imon) (U0, u1) = [A(n) /7] — [A(m)/7]. (3.46)
And thus obviously also
Lemma 3.19. We have

##(m.ni (U0, ur) = [A(n)/m] = [A(m) /7| -1, (3.47)

Fimon)(uo,u1) = |A(n) /7| — [A(m)/m] +1, and (3.48)

#(mon) (U0, u1) = [A(n)/m] — [A(m)/7]. (3.49)
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Proof. By (3.36) we have Wj(up,u1) =0 <= A(j)/m € Z and hence by (3.46)

we have

0 if Wm(’LLmul)?éO

#(m,n) (U0, u1) = [A(n) /7] — [A(m) /7] — {1 if W (w0, u1) = 0

— [A@)/] - [A(m)/n] - {1  Wonluto, ) 20
1 if Wm(uo,ul) = 0,
if Wi, (ug, uq
By t0,11) = [A(n)/7] = [A(m)/7] + {0 1 Wa(o, ) 70
1 if Wn(uo,ul) =0
= |A(n)/7] = [A(m) /7] + 1,
#(m.n) (U0, u1) = [A(n) /7] = [A(m) /7]
n 0 if Wn(u07u1)7€0 B 0 if Wm(uo,ul) 750
1 if Wm(uo,ul) =0

= [A()/7] +1 = ([A(m)/7] +1).

O]
Lemma 3.20. We have
#[mn] (UO; ul) = _#(m,n) (u17u0)7 (350)
# (mn) (U0, u1) = —F ) (U1, u0)- (3.51)
If Wi (uo,u1) # 0 and W, (ug,ur) # 0, then
#[mvn] (Uo,ul) = _#[m,n] (u17u0)~ (352)
Proof. By [x] = —|—x| we have
#im,n] (U0, u1) = [(61(n) —bOo(n))/m] — [(61(m) — bo(m))/7]
= —([(6o(n) — 1(n))/m] = [(6o(m) — 61(m))/7])
= _#(m,n)(ulauO)
and
#(m,n) (w0, u1) = [(01(n) — Oo(n))/m] — [(61(m) — Oo(m)) /7| — 1
= —([(6o(n) — 01(n))/m] — [(Bo(m) — 01 (m))/m] + 1)
= 7#[m,n) (u17U0)'
O]
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If Aa = 0 holds, then (1.25) reduces to (1.10), which is also (1.8) from [4], see
the following

Lemma 3.21. Let (1.25) and ag = aq, then (1.10) holds, which is

1 sz()(n+1)—zo—b1(n+l)+21>0 and
either Wy, (ug, u1) W1 (ug,u1) <0
or Wy (ug,u1) =0 and Wyy1(ug,ui) #0

Ho(ug,ur) =4 —1 ifbo(n+1)—z0—bi(n+1)+2 <0and  (3.53)
either Wy, (ug, u1) W1 (ug, u1) <0
or Wy (ug,u1) # 0 and Wyy1(ug,u1) =0

0 otherwise.

Proof. Without loss, let zg = z1. If we have W, (ug, u1)Wpy1(ug,u1) > 0 or
W (ug,u1) = Wpi1(uo,u1) = 0, then the claim holds obviously. Otherwise, by
(3.5) and Corollary 3.17 we have

Wit (uo, ur)uo(n + 1)ug(n + 1) — Wy (uo, ur)uo(n + Dug(n + 1) (3.54)
= Ab(n + Lug(n + 1)%us(n + 1)% #£ 0.

If Wi, (ug,u1) = 0, Wi 11 (ug, u1) # 0 holds, then Wi, 11 (ug, ug)ug(n+1)us(n+1)
and Ab(n + 1) are of the same sign by (3.54).

If Wi (ug,u1) # 0, Wiyt (uo,u1) = 0, then W, (ug, u1)ug(n + )ug(n + 1) and
Ab(n + 1) # 0 are of opposite sign by (3.54).

Now, suppose W, (ug, u1)Whp41(ug, u1) < 0 holds: if #(ug,u1) = 1, then

W1 (ug, ur)ug(n + Dug(n + 1) > 0, W, (ug, u1 )ug(n + Lug(n+ 1) < 0,
thus by (3.54) we have Ab(n + 1) > 0. If #(ug,u;) = —1, then
Wi (ug, ur)ug(n + Dug(n 4+ 1) > 0, Wy 41 (uo, ur )ug(n + Lug(n+ 1) < 0,

and hence Ab(n + 1) < 0 holds by (3.54). O

Remark 3.22. Consider (1.25), then

Wi (uo, 1) Wyt (uo,ur) 0 or Wy(ug,ur) = Whyi(ug,ur) =0 (3.55)
= #n(uo,u1) = —#n(u1,u0),
Wn(uO,Ul)Wn+1(UQ,’LL1) <0 = #n(uo,ul) 7& 0 (356)

by Corollary 3.17. Moreover, if Wy (ug,u1) = 0 and Wi41(uo,u1) # 0 holds,
then up(n) =0 <= wui(n) =0.

39






Chapter 4

Finite Jacobi matrices

Now we’re prepared to prove Theorem 1.5. Therefore we normalize the solutions
of 7 fulfilling the left /right Dirichlet boundary condition of the Jacobi matrix J
from (1.8) so that

s-(0) =0,s5-(1) =1, s+(N)=0,8.(N+1) =1 (4.1)

Fix a base point ng = N or ng = 0, then by si(ng) = 0 we have sinf(ng) =0
and by s4(ng+1) = 1 we have —a(ng)sx(no+1) = ps(ng) cos 04 (ng) > 0, hence
by 64 (ng) € (—m, 7] we have

Qi(no) =0. (4.2)

From Theorem 3.12 we obtain the following
Corollary 4.1. We find

#(0,n)(s=) = [0s_(N)/m] — 1,
#o.v)(s+) = =05, (0)/m] — 1. (4.4)

Recall a few well-known findings about the spectrum of Jacobi matrices:

Lemma 4.2. Confer [2]. We have
z€o(J) < s_(2,N)=0 < s4(z0)=0. (4.5)

Lemma 4.3. Confer [/2]. The Jacobi matriz J has N — 1 real and simple

etgenvalues.

Proof. Since J is Hermitian all eigenvalues are real: let z € o(J), Jv = zv and
[lv]] = 1, then
z = (v, zv) = (v, Jv) = (Ju,v) =Z.

It can easily be seen that every eigenvector u corresponding to z fulfills Tu = zu
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and u(0) = 0. Hence, by Wy(s—
linearly dependent by Lemma 2.24. O

(2),u) = 0, the solutions s_(z) and u are

Theorem 4.4. Confer [/(] or Theorem 4.7 in [/2]. We have

B o) (J) = #0.n(5-(N) (4.6)

= #(0,N)(5+()‘))7 (4~7)
where Eq(J) denotes the number of eigenvalues of J in Q C R.

Now we can already relate the spectrum to the Priifer transformation.

Lemma 4.5. Let ag,a; < 0, then

E(—con) (1) = E(=s0,00) (o) (4.8)
= [Ag s o)usn ) (N)/T] = [Agy 4 (ho)osr— () (0) /7]
= LASo.f(/\0),81,+(/\1)(N)/7TJ - LASO,,()\O),SL+(/\1)(O)/'/TJ,

E(_oonn)(J1) = E(—c0,20) (o) (4.9)
= |—A50,i(>\0),51,q:()\1)(N)/ﬂ--‘ - \.ASO,i(AO)uSI,;()\l)(0)/7TJ -1,

E(—con) (1) = E(—cor0)(Jo) (4.10)
= [As 101 ) (N)/T] = [Agy 4 (ho)ssrx (0 (0) /7] + 1,

and
E(—oon)(J1) = E(—o0,2)(J0) (4.11)

= |—Aso,7(/\o),s1,+()\1)(N)/7T-|
= [As 1 o)) (V) /7] =

[ASU —(Xo)»s1,+ (A1) (O)/ﬂ:I
I.ASO +(X0),s1,— (A1) (O)/T‘-J

where Ay, =0, — 0, € £(Z) and s+ are the solutions from (4.1).

Proof. We abbreviate s; + = s; +();), then by Theorem 4.4, Corollary 4.1, and
—[z] = |—z] for all x € R we have

E(—oo) (V1) = E(—c0,2)(J0)

= F#0,n) (51,-) — #(0,n)(50,4)

= [0s, _(N)/m] + [0, (0) /7] = [6s, _(N) /7] —
= [(0s, _ (N) = 05 . (N)) /7] = [(05,_(0) =
=[Asy 4,51, (N)/T] = [Asq 50, (0)/7]
~(E(=sor0)(J0) = E—oo,0) (V1))
= —([Asi 450, (N) /7] = [Asy 4150, (0)/7])
= [Aso 51 s (V) /] = [Asy _ 51, (0)/7].

[7080 + (O)/WW
050, (0)) /7]
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By Lemma 4.2 we have

Ao €0(Jo) <= Agy_ 51 (N)/T €l = Ay, 5, (0)/7 €Z, (4.12)
MeEo() <= Ag 0 (N)/mel = Ay _ s, ,(0)/m€Z

and hence,

E(—°07>\1)(J1) - E(—oo,)\o)(JO) (413)
if )\0 ¢ G‘(J())

1
= [Aso,1781,¥(N)/7r-| - I-Aso’i’slﬁ(())/ﬂ-J - {0 if Ao € o(Jo)

. L _ 1 if A ¢ o(Jh)
= [Bao o5 (N)/T] = [Bsp 150, (0)/ H{0 if A € o(h).

By (4.13) we now have

E ooy (J1) = E—oox) (o)
if Ao & o(Jo)

= By o (N) /1] — Ay s 2 (0)/] {1 ,

1 if N € (T(JQ),
E—oon)(J1) = E(—oc,50)(Jo) (4.14)
it A ¢ o(J))

1
Sl VAV T =Bt m
[Bsgss o (N)/m) = T (0)/ ”{1 if Ay € o(),

and by (4.14) we have

E(—oox1(J1) = E(—o0,20](Jo)
0 if /\0 §é O'(Jo)

= Aso S1,4 T = ASU FoS1,+ g N
[Aggrs0.2 (N)/m] = [Ag, (0)/7] +1 {1 if Ao € a(Jo).

The last claim now follows from (4.12). O

And finally we obtain Theorem 1.5 except that we count one possible node too

much.

Theorem 4.6. Let ag,aq < 0. Then,

E(_Ooazl)(Jl) - E(—oc,zo] (JO)

= #0,n) (10,4 (20), u1,—(21)) = #(0,n(u0,~ (20), u1,4(21)), (4.15)
E(*N,Zl)(‘]l) - E(foo,z0)<JO)
= #o.v (wo0,+ (20), ur,—(21)) = #(o,3) (w0~ (20), ur (1)), (4.16)

43



B co,z1(1) = E(— o020 (Jo)

= #(0,n) (to,+(20), w1, (21)) = #0,n)(u0,~ (20), u1,4 (21)), (4.17)
E(—s0,211(J1) = B(—s6,2)(J0)

= #0.8) (u0,+(20), u1,—(21)) = #0,3) (u0,—(20), u1,+(21)), (4.18)

where Eq(J;),j = 0,1, is the number of eigenvalues of J; in & C R and
uj +(2;) are solutions fulfilling the right/left Dirichlet boundary condition of
J, i.e ujy(z5, N) =u;_(z;,0)=0.

Proof. By Lemma 4.5 we have

B con)(J1) = E(—so,n0) (Jo)
= [Asy s ho)usr— ) N/ = TAg L (xo)ssr,—(an) (0) /7]
= [Aso,_ro)si,s O (V)/T] = [Dsy (ao).s1, () (0)/7],
E—con](J1) = E(—o0,20)(Jo)
= [Asy _o)ssn,s ) /7] = TAsy _(30),51,4 (M) (0) /7]
= [Asy s o)si— ) N)/T] = [Dsg  (ao)sn,— ) (0) /7,
E—o)(J1) = E(—o0,00) (o)
= [As L o)usrx 00) (V)T = [Asg s (ho)ssrx (A1) (0) /7] — 1,
B con)(J1) = E(—co,x0)(Jo)
= [Aso 2 o)sr s ) (V) T] = TAg s (ho)usrr (A (0) /7] + 1,

now use Lemma 3.19 and (3.46). Moreover, we can replace s+ by a constant

multiple u4+ because they have equally many nodes. O

For the finite case everything that remains to be shown now is that under certain

assumptions there’s indeed no node at the place N — 1.

Proof of Theorem 1.5. The solutions u_ and w4 in Theorem 4.6 depend on the
coefficients a(0) and a(N — 1) of 7, although J (and hence also o(J)) doesn’t
depend on them. We choose

ap(N —1) =a; (N —1). (4.19)
Then, by Aa(N —1) =0 and (3.5) we have

Wi (uo,+(20)), u1,~(21)) = Wi—1(uo4(20), u1,—(21)) (4.20)
= (bo(N) — 20 — b1(N) + 21)u07+(20, N)ul,_(zl, N) =0.

Hence there’s no node at N —1. The same holds for W (ug —(20), u1 +(21)), thus
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#n-1(uo,+(20),u1,+(z1)) =0 and
Wi —1(uo,+(20), u1,5(21)) = W (uo,+(20), u1,(21)). (4.21)

O

Moreover, we finally note a few additional properties of the nodes of the Wron-
skian.

Corollary 4.7. We have

#io,n)(w0,£(N), u1,£(N)) = —#o,n1(u1,£(N), uo £ (N)), (4.22)

where uj +(A\) denotes a solution fulfilling the right/left Dirichlet boundary con-
dition of J;j, where j =0, 1.

Remark 4.8. We have

#io,n5) (w0, +(A), uz — (N))
= #0,3) (o, + (A), u1,— (N)) + #po,5(u1,— (A), uz, (V) (4.23)
+ # (0,37 (u2,4+ (A), uz,—(A)),
#io.n)(wo,—(A), uz,+(A))
= F(0,n) (10, — (A); w1 4+ (N)) + Fjo, w57 (w1, +(A), uz,— () (4.24)
+ #jo,n5) (uz2,— (), uz 1+ (N)),

where uj +(A\) denotes a solution fulfilling the right/left Dirichlet boundary con-
dition of J;j, where j =0, 1.

Proof. Abbreviate u = u(\), then by Theorem 1.5 we have

#io,87 (U0, 45 u3,—) = E(—oo,n)(J3) = E(—oe,n) (Jo)
= E_oo\|(1) = E—oo ) (J0) + E(—oon)(S2) = E(—oox)(J1)
+ E(—oon)(J3) = E(—0on)(J2)
= #o,8) (w0, +,u1,—) + Fo,n) (w1, -, u2 1) + F0,n5) (U2 4, uz, ),
#io,n) (10, U3,+) = E(—oon(J3) — E(—0ox)(J0)
= E(—oo)(J1) = E—oon)(J0) + E(—oox)(J2) = E(—oo) (1)
+ E—oon(J3) = E—oon)(J2)

= F(0,n) (U0, u1,+) + o, N (w14, u2,—) + #o,n) (u2,—, Uz + ).
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Chapter 5

Determinants

We'll drop our main assumption a(n) < 0 for the rest of this chapter and

consider Jacobi matrices

b(1) a(1)
1
7= | D (5.1)
a(N —2)
a(N —-2) b(N-1)
from (1.8), where just
a(n) #0 (5.2)
holds for all n. We denote the determinants of the top left submatrices of J by
b(1) a(1)
1
m_(n) = |V (5.3)

a(n—1) b(n)

and the determinants of the bottom right submatrices of J by

b(n) a(n)
my(n) = ™ , (5.4)
a(N — 2)
a(N —2) b(N-1)
where n =1,..., N — 1. To simplify notation we set
m_(0) =my(N) =1, (5.5)
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m_(—1)=my(N+1)=0,

and, without loss, a(0) = a(N — 1) = —1.

5.1 Solutions and leading principal minors

For the rest of this chapter let ¢»_ and ¥ be solutions of 7¢) = 0 fulfilling the
left /right Dirichlet boundary condition of J. We normalize the solutions such
that

¥-(0) =0, ¢_(1)=1=m_(0), (5.6)
YN —1)=1=my(N), ¢(N)=0.
Now, we find

Lemma 5.1. Let a(n) # 0 for all n, then

n) = m_(n—1) 7
vt H;L;l —a(j)’ 57
n)= 7+(n D) 5.8

foralln=0,...,N. Ifa <0, then m_(n—1) and ¢_(n) as well as my(n+1)
and 4 (n) are of the same sign. Obviously, 1 can be replaced by a solution of
(T —2) =0 if J is replaced by J — z.

Proof. For the first claim look at ¢_(1) =1 =m_(0) and

Y- (2) = —a(1)7 (b(1)1- (1) + a(0)y—(0)) = —a(1)"'m_(1).

For n > 2 by the Laplace expansion we have

m_(n) =b(n)m_(n—1) —a(n —1)*m_(n — 2) (5.9)
and hence
—m_(n) — aln— —(n—=2) —bin m_(n—1)
T RS v T Rl t ey

For the second claim look at ¢, (N —1) =m,(N) =1 and

BN = DY (N=1)  my(N 1)
—a(N —2) - —a(N -2)

PN —-2) =
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by 14 (IN) = 0. For the inductive step we have

bo(n—1) = b(n)¢+(n_);s(_n)11§+(n +1)
_ b(n)my(n+1) —a(n)®>my (n+2) _ m (n)
1= ~ald) [T, )

which holds by m (n) = b(n)m4(n+ 1) — a(n)*m4 (n + 2).

O

Formula (5.7) can be found in I1.1.(8) from [18], confer also [35] and (5.28) which

is equation (1.65) in [42].
Lemma 5.2. Let J > 0, then

N-2
Hn:l a(n)2 > 0

m_(N—2)> Hg;; b(n)

and

Hf:];12 —a(n)
1, b(n)

Proof. By the Laplace expansion and Sylvester’s criterion we have

Y_(N—1)> > 0.
m_(n) =bn)m_(n—1) —a(n —1)*>m_(n—2) >0

foralln =1,...,N —1, thus b(n) > a(n — 1)*2= EZ ?g > 0 and

N-1

[ o) > () m (N

n=2

N-1

) Ha(n—1)2>0.

n=2

s
;
=
o

[\
~

Now, use ¢p_(N — 1) H?;Q —a(j) =m_(N —2) from (5.7).

5.2 A Wronskian of determinants

(5.10)

(5.11)

In this section we demonstrate how Theorem 1.5 can be translated to subdeter-

minants of Jy and Ji, therefore we assume
a = ap = ay.

Lemma 5.3. We find
N—2

Wi (to,—, %1 +) 1 = a(n)mo._(n —1) my4(n+1)
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forallm=0,...,N — 1. Moreover,
(I)O = det Jl and (I)N—l = det Jo. (513)
Proof. For alln=1,..., N — 2 we have

—a(n) "' W (o, -, 91,4)
=14+ (n)o,—(n+1) = o (n)¢1,4+(n+1)
_mig(n+1mo—(n)  —a(n)mo—(n—1)mi4(n+2)

C —a() [ —ali) [1:5% —al(i)

by Lemma 5.1. Hence,

N-2
—a(n)"'Wa(o—,v14) [] —a
=1

= a(n)mo,—(n — myp (n+2) — a(n)~'ma 4 (n -+ Dmo,— (n).

Moreover,
N—2
— a(0) " Wo(vo,—, ¥1,+) = v1.4(0) = det Jy [ —a(i)™",
i=0
where a(0) = —1, and
N-
—a(N = 1)""Wx_1(tho,—,%1,4+) = 1o, (N) = det Jo H

O

Now, we weight the nodes of ® in the same way as we weight nodes of the
Wronskian of solutions, that is,

1 1fb0(n+1)—b1(n+1)>0and
either ®,®,,41 <0
or &, =0and ®,41 #0

#,0=<¢ —1 ifbg(n+1)—bi(n+1) <0 and (5.14)
either ®,$,,4; <0
or &, #0and ®,,1 =0

0 otherwise.

With this definition we find
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Theorem 5.4. Let a < 0, then

N—2
E—oo0)(1) = E(coo0)(Jo) = Y _ #;®. (5.15)
7=0
Proof. Obviously, by a < 0 and Lemma 5.3 the sequences W (o, —,¢1,+) and @
are of the same sign for all n =0,..., N — 1, and thus
#;P = #;(Yo,—, ¥1,4) (5.16)

for all  =0,..., N — 2. Further, by Theorem 1.5

E(_0,01(J1) = E(—o0,0/(J0)

N—2 N—2
= #o,n-1](Y0,—,V1,4) = Z #;(Vo,—,Y1,4) = Z #,;P
i=o =0
holds. O

Of course, the more general case (different a’s) analogously translates to the

principal minors. And further we easily obtain the 'derivative’ of ®:

Theorem 5.5. Let a < 0, then
q)n — (I)n,1 = (bo(’ﬂ) — bl(n))moy,(n — 1)m1,+(n + ].) (517)

holds for alln=1,...,N — 1.

Proof. By Lemma 5.3, (3.5), and Lemma 5.1 we have

N-2 N-2
O, — @,y = Wo(to—,vy) [[ —al®) = Wua (o 91 4) [] —a
=1 N =1
= (bo(n) — b1 (n))vho,— (n)thr +(n) [ —a
i=1

= (bo(n) = b1(n))mo,—(n — 1)my 4+ (n +1).

O
And obviously, we find analogous theorems if we consider mg  and m; _
Lemma 5.6. For alln=0,...,N —1 we have
N-2
W (to,1,¢1,-) [ —a (5.18)
i=1
_fatmosn+2)  mi(m)

7 _ 6,
mo+(n+1) a(n)my —(n—1)
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Moreover,
Dy =—detJy and Py_; = —det.J. (5.19)

Proof. Use Lemma 5.3 and W, (¢o 4, %1,—) = =Wy (¥1,—, Y0 +)- O

Theorem 5.7. Let a = ag = a1 <0, then
N-2
E(—o00)(J1) = B—oo0)(Jo) = > #;. (5.20)
7=0

Proof. Obviously, by a < 0 and Lemma 5.3 the sequences W, (¢o +,%1,—) and
®,, are of the same sign for all n = 0,..., N —1 and thus #i(o4,91,-) = #ji)
forall 7 =0,..., N —2. By Theorem 1.5 we have

N-2
E(—o0,0)(J1) = E(—s0,0)(Jo) = #o,n-1](%0,+,%1,-) = #;9.
§=0
O
Theorem 5.8. Let a < 0, then for alln=1,...,N — 1 we have
®,, — ®,_1 = (bo(n) — b1(n))mo +(n + )my_(n —1). (5.21)
Proof. By Lemma 5.3, (3.5), and Lemma 5.1 we have
N-2
(I)n - q)n—l == (Wn(w0,+a 7/}1,—) - n 1 7/]0 +,¢1 — H
i=1
= (bo(n) —b1(n))mo+(n+ 1)m1 _(n —1).
O

5.3 Proof of Sturm’s theorem by Jacobi’s theo-

rem

In this section we present an alternative proof for (4.6), that is, we show that
E(_,(J) = #0,n) (- (2)) holds if a(n) < 0 for all n. Moreover, we extend
this claim to the case a(n) # 0 for all n.

Therefore, let A be a Hermitian matrix of rank r and let

ma—(j) = det(A;) (5.22)

be the leading principal minors of A, that is, A; is the top left submatrix of A
generated of the first j rows and columns of A. Moreover, we set m4,_(0) = 1.
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Theorem 5.9 (Jacobi). [§], Theorem 8.6.1 in [71]. If ma _(j) # O for all
j=1,...,r, then,
BE(_oo,0)(A) = #0,r)(ma,—).

The proof is elementary. It was found in Jacobi’s handwritten legacy and
posthumously communicated by Borchardt [8] in 1857. In 1881 Gundelfinger
[23] showed that the claim still holds if there are simple zeros in the sequence

ma:

Theorem 5.10 (Gundelfinger). [23], Theorem 8.6.2 in [71]. If the sequence

ma,—(0),...,ma,_(r) contains no two successive zeros and ma _(r) # 0, then,
B wo0)(A) = #@0.r)(ma,-).

The sequence ma,— changes sign around simple zeros.

Jacobi’s theorem has moreover been extended to no three successive zeros in
the sequence m4 which has been proven by Frobenius in [16].
For the next two lemmas we again relax our main assumption a < 0. It’s enough

to assume that a(n) # 0 for all n.

Lemma 5.11. Let J be the Jacobi matriz from (1.8) where a(n) # 0 for all n.
If det(J) =0, then m_(N —2) #0. If m_(j) =0 for some j=1,...,N — 2,
then

m_(j —1)m_(j+1) <O0. (5.23)

Proof. For all j > 1 by the Laplace expansion we have
m—(j) = b()m—(j — 1) —a(j — 1)*m_(j — 2), (5.24)

hence the sequence m_ is a three-term-recurrence. Thus, if m_(j — 1) =
m_(j) = 0 for some j, then m_ vanishes which contradicts m_(0) = 1. More-
over, if m_(j —1) =0, then m_(j —2)m_(j) < 0 holds by (5.24). O

Theorem 5.12. Let J be the Jacobi matriz from (1.8) where a(n) # 0 for all

n, then
E(—oo,0)(J) = #0,n—1)(m_).

Proof. By Lemma 4.3 the spectrum of J is real and simple. If 0 € ¢(J), then
det(J) =m_(N—1) =0, hencer = N—2 and m_(r) # 0 by Lemma 5.11. If 0 &
o(J) we have det(J) = m_(N —1) = m_(r) # 0. In either case by Lemma 5.11
and Gundelfinger’s theorem we have E(_ . 0)(J) = #0,n—1)(m_). O

In [18], p. 79-85, Gantmacher and Krein considered classical oscillation theory
for Jacobi matrices using the concept of Sturm chains and w-lines. In particular
they established Theorem 5.12 in I1.1.7°. Moreover, it can be found in [52, 5.38]
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and [21, Theorem 8.5.1] where it is deduced from the strict separation of the

eigenvalues.
Theorem 5.13. Let J be the Jacobi matrixz from (1.8), a(n) # 0 for all n, and
let u_(z) be a solution fulfilling u_(z,0) = 0. Then,

E(—oo,2)(J) = #0,3) (u-(2)) (5.25)
= #(O,N—l)(mJ—z,—) (5.26)

if we say u_(z) has a node at n if either
u_(z,m)=0 or wu_(z,n)a(n)u_(z,n+1)>0. (5.27)

The nodes of the minors mj_, _ are defined as usual, see (3.17).

Proof. The second claim follows from o(J) = o(J — z) + z and Theorem 5.12
by E(—oo,z)(J) = E(—oo,o)(J —z)= #(O,N—l)(mez,fy

Now look at the first claim: u_ is a constant multiple of ¢_ and hence they
have equally many nodes. Moreover, by ©_(z,0) = 0 we have # n)(¢-) =
#a,n)(1—). Compare the nodes of m;_. _ and 9_(z): as in Lemma 5.1 we
find

n—1
my—z—(n—1)=9_(z,n) [[ —ali)™ (5.28)
j=1
The sequence m ;. _ has a node at n if either
myj_,—(n)=0 or my_,_(n)myj_,_(n+1)<0 (5.29)
holds and my_, _(n) =0 < ¢_(z,n+ 1) = 0. Moreover, by
my_,—(n)my_, _(n+1) (5.30)

n

= —aln+ 1) _(z,n+1)Y_(z,n+2) H a(j) 2

j=1
we have #o,v—1)(mJ_s_) = #am - (2) = #ow W (2)) if we say p_(2)
has a node at n if ¥_(z,n) =0 or a(n)yY_(z,n)p_(z,n+1) > 0. O
For (5.27) confer also p.3 of [16]. Of course, this theorem also extends to

arbitrary tridiagonal matrices if we decompose the matrix according to (5.37)

and consider each block separately.
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5.4 A short note on Sylvester’s criterion

It’s well-known that the definiteness of a real symmetric matrix A can be read

off the sign-pattern of the leading principal minors, confer e.g. [39]:

A is positive definite (5.31)
<= all the upper left submatrices of A have positive determinants,
A is positive semidefinite

= all the upper left submatrices of A have nonnegative determinants.

That is, nonnegativity of the leading principal minors is a necessary but not
sufficient criterion for A > 0. Therefore consider the striking counterexample

given by the symmetric tridiagonal matrix

(O O), x <0, (5.32)
0 =z

which is frequently mentioned in the literature, confer e.g. [6, 7, 17, 18, 32].

Now look at the Jacobi matrix J from (1.8) where
a(n) #0 (5.33)

holds for all n and suppose that all the upper left submatrices J(n) of J have

nonnegative determinants
m_(n) = det(J(n)) >0, (5.34)

where we use the notation introduced in (5.3) and (5.5). We deduce from the

Laplace expansion that
m_(n) =bn)m_(n—1)—a(n —1)*m_(n —2) (5.35)

holds for all n > 2. Hence, no two consecutive minors vanish since (5.35)
is a three-term recurrence (otherwise all of them would vanish, but we have
m_(0) = 1). Thus, if m_(n) = 0 for any 1 < n < N — 1, then we obtain a
contradiction from

0<m_(n+1)+an)*m_(n—1)=bn+1)m_(n) =0.
Hence, at most the determinant of J itself can vanish. If det(J) > 0, then J > 0
by (5.31) and if det(J) = 0, then J(N — 2) > 0. Since J borders J(N — 2) the

eigenvalues of J interlace those of J(N — 2), confer e.g. Theorem 4.3.8 in [24],
hence by 0 € o(J) we have
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Theorem 5.14. Let J be a Jacobi matriz with a(n) # 0 for all n, then

J is positive semidefinite
<= all the upper left submatrices of J have nonnegative determinants
and if so, then at most the determinant of J vanishes.

We didn’t find this claim in the literature, but it constitutes a special case of
Theorem 5.12 which is Theorem 8.5.1 in [21].
Now, we drop the assumption a(n) # 0 and consider a tridiagonal matrix

(5.36)
. a(N — 2)
a(N—=2) b(N-1)

Then, T is a direct sum of Jacobi matrices (i.e. matrices with non-zero secondary
diagonals)

and the spectrum of 7' is the union of the spectra of the Jacobi matrices,
o(T) = Ugo(Jk). (5.38)

Thus,

Theorem 5.15. Let T be a tridiagonal matriz, then

T is positive semidefinite
<= all the upper left submatrices of Jy, have nonnegative determinants

for all k,

where Jy, denote the Jacobi matrices such that T = @y J}.

These findings can easily be extended to negative semidefinite tridiagonal ma-

trices, therefore observe that
T<0 << -T>0

and, if we denote the leading principal minors of —J by m_; _(n), then

Hence,
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Theorem 5.16. Let J be a Jacobi matriz with a(n) # 0 for all n, then

J is negative semidefinite
<= the leading principal minors m_(0),...,m_(N —1) of J

alternate in sign.

If J <0, then at most the determinant of J vanishes.
and

Theorem 5.17. Let T be a tridiagonal matriz, then

T is negative semidefinite
<= the leading principal minors my, _(0),...,my, (N —1) of Ji

alternate in sign for all k.

If T > 0, then at most the determinants of the matrices Jy vanish.
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Chapter 6

Triangle inequality and

comparison theorem

We establish the triangle inequality and the comparison theorem for Wronskians
which generalize Theorem 5.12 and Theorem 5.13 from [3] to different a’s and
will appear in [2]. Moreover, Theorem 6.3 generalizes and sharpens Theorem
5.11 from [3].

Theorem 6.1 (Comparison theorem for Wronskians I). Let u_,, denote a
solution fulfilling the left/right Dirichlet boundary condition of J and let J; >
Jo, then,

#io,8) (w01 (A), u2+(N)) = #po,3)(vo,+(N), u1,£(N)), (6.1)

where #o,n) can be replaced by # 0, N1, #0,N), OT #(0,N)-

P?”OOf. Let O'(J1) = {/\1,...,/\]\/_1} and U(JQ) = {5\1,...,;\]\/_1}, then /\i 2 5\,‘
for all i by Jy > Ja, cf. [31, Theorem 8.7.1], and hence we have E(_ »)(J2) >
E(_s ) (J1). Thus, by Theorem 1.5

#10,8) (w0, +(A); u2,—(N)) = B0, ) (J2) = E(—oo,n)(J0)

> B (1) — By (Jo) = #om1 (o Wyer_ (). 02

The other claims follow analogously from E(_ zj(J2) = E(_oo,(J1) and The-

orem 1.5. O

Lemma 6.2. Let x,y € R, then



Proof. Choose kg, k, € Z,x,v € (0,1] such that © = k; + x and y = ky + ¢,
then [z] = k; + 1 and [y]| = ky, + 1 holds. Moreover,
[z +yl = Tke + ky + X + ]
ket ky+1=l2]+ [yl -1 ifx+¢e(0,1]
ky +ky+2=[z] + [y] if x +v¢ € (1,2]

and

(2 —y] = ke — ky + X — V]
_ ky — ky = [z] = [y] if x —¢ € (-1,0]
ky —ky+1=[z]—[yl+1 ifx—v¢ €(0,1).

For the second claim choose kg, ky, € Z, x,% € [0,1) such that z = k; + x and
y = ky + 9, then |x| =k, and |y| = k, holds. Moreover,
[z +y| = ke + Ky + X +¢)
) ket Ey = 2]+ [y if x —1 €10,1)
N {km+ky+1: lz] + ly]+1 if x—¢e[L,2),
lz —y] = ko —ky +x —¢]
{kx—ky—l—LxJ—LyJ—l if x— v € (~1,0)

ke —ky =[] = ly] if x —¢€[0,1).
O
Theorem 6.3. Let m < n, then
|#[m,n] (u()aul) - (#(m,n) (ul) - #(m,n) (UJO))‘ <1, (67)

where #(y, ) can be replaced by # (m.n) OF #(mn)-
Proof. By Lemma 6.2 we have
O<[z—yl=([z]=Tyl) <1 and —1<[z—y|]—(lz]-|y]) <0

for all z,y € R. Hence, by (3.46), Theorem 3.12, and —[z]| = | —z] we have

[# () (w0, w1) — (F# () (W1) — #(mn) (o))
=[[A(n)/7] = [A(m)/]
= ([01(n)/7] = [61(m) /7] = [6o(n)/7] + [6o(m)/7])]
= |[(01(n) = Oo(n)) /7] — ([61(n)/7] = [6o(n)/7])
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+ L(6o(m) — 01(m)) /7] — ([6o(m)/7] = [61(m)/7])| < 1.

By Lemma 3.19 and Theorem 3.12 we moreover have

F#(mon) (w0, u1) = (#(mn) (U1) — #(mn) (o))
= [A(n)/m] = [A(m) /7] =1 = [01(n) /7] + [61(m)/7] + [6o(n) /7]
— [0o(m)/~]
=[A(n)/m] = ([01(n) /7] — [60(n)/7])
= ([A(m) /7] = ([61(m)/7| — [6o(m)/7])) — 1
Fimon) (05 U1) — (F(m,n) (U1) — F(m,n) (o))
= [A(n) /7] = [A(m)/7] + 1= [01(n)/7] + [01(m) /7] + [0o(n)/7]
— [0o(m) /]
=14 [(6o(m) —b6:1(m))/7] — ([6o(m)/7] — |[01(m)/7])
= ([(Bo(n) = 61(n))/m] = ([60(n)/m] — [61(n)/x])).

Theorem 6.4 (Triangle inequality for Wronskians). Confer [3]. We have

|#[m,n] (UOa ’U,g) - (#[m,n] (U(), ul) + #[m,n] <u17 ’lj,2)>| < 1; (68)

where #,.) can be replaced by # (. n) and u; be solutions of Tju; = Aug,j =

0,1,2.
Proof. Abbreviate A; j = Ay, u;, then Ag 1 + Ay o = Ag2. By (3.46) we have
H#im.n) (W0, u2) = [Ao2(n)/7] — [Ag2(m)/m],

hence

#[m,n] (u07 Ul) + #[m,n] (Ul, u2)
= [Ao1(n)/m] + [Ar2(n)/m] — ([Aop(m)/7] + [A12(m)/7])
< [Ao2(n)/m] +1 = [Ag2(m)/m]| = #mn) (w0, uz2) +1

and

#[m,n] (u07 ul) + #[m,n] (ula UQ)
> [Ag2(n)/m] = ([Ao2(m)/m] + 1) = #pn (o, uz) — 1

holds by [z +y| < [z] + [y] < [z +y] + 1 for all z,y € R. Further, by
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Lemma 3.19 and |z +y] — 1 < |z] + |y] < |z + y] we now have

# (m,n) (U0, u1) + F# (m,n) (U1, u2)
= [Ap(n)/7] = [Aoa(m) /7| =1+ [A12(n)/7] = [A12(m)/m] =1
< [Aga(n)/m] — [Ao2(m) /7| = #(m ) (uo, u2) +1
and # (m,n) (U0, U2) < #(m,n) (U0, u1) + #(myn) (U1, u2) + 1. O

Theorem 6.5 (Comparison theorem for Wronskians II). If either

A W;(ug,ur)uo(j + Dur(j + 1) <0 and Wj(ur,uz)ui(j + ug(j+1) <0
forallj=0,...,N—2 or

B apg = a1 = az andbo(j) 2()1(]) Zbg(]) fO’I“ allj: 1,...N—1

holds and 0 and N — 2 are (positive) nodes of W (ug,u1), then W(ug,us) has at
least one positive node at 0,..., N — 2.

Proof. In either case we have #;(up,u1) > 0 and #;(ui,ug) > 0 for all j =
0,...,N — 2 and hence from Theorem 6.4 we conclude

#10,n—1) (0, u2) = #0,n-17(uo, ur) + #o,n—1)(u1, ug) —1.

>2 >0
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Chapter 7

Criteria for the oscillation
of the Wronskian

In this chapter we show that the number of nodes of the Wronskian on the
half-line and on the line is finite in a gap of the essential spectrum. From now
on let u;(A;) be solutions of (1; — A\;)u; = 0, where j =0, 1,2, and

a=ag=ai = as. (7.1)

Definition 7.1. We call a perturbation Ab = by — by sign-definite at z (near
o0) if there exists an N such that either Ab(n) > z or Ab(n) < z holds for all
n > N. Moreover, we say Ab is sign-definite if Ab is sign-definite for all z € R.

If by — by is sign-definite at \g — A1, then by — by is sign-definite at A\ — Ag and

lim su E # Up, U = hm lIlf E # ug, U 7.2
" p VALY 1) VANGY 1) ( )

lim su E # U, U = lim inf E # Uy, u 7.3
" p 1 O) " 1 0) ( )

holds. If so, then either
#10,00) (0, u1) = Z#j(anul) =keZ (7.4)
j=0

holds and there exists an N such that #,(ug,u;) =0 for all n > N or

#10,00] (10, 1) Z#J ug, U1) (7.5)
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holds and for all N there exists an n > N such that #, (ug,u1) = 1. By the
triangle inequality (Theorem 6.4) we have |# n)(uo,u1) + #o,n](u1,u0)| < 1
for all n, hence

#10,00) (U0, u1) is finite <= F(g,o0)(u1,up) s finite, (7.6)

#0,00) (U0, u1) is finite <= #(0,00) (o, u1) s finite (7.7)

for all solutions g of (79 — Ag)tp = 0. So the following is well-defined:

Definition 7.2. Let by — by be sign-definite at \g — A1 near oo, then we call

70 — Ao and 11 — Aq relatively nonoscillatory near oo and denote

To—Xo ~ =X if Z#j(uo,ul) is finite

=0

for one (and hence for all) solutions of (1; — Aj)u; =0, j =0,1. Otherwise we

call 7o — Ao and 11 — A\q relatively oscillatory near oco.

Here, we only carried out the +oo-case. Obviously we obtain the same results
near —oo if by — by is sign-definite at A\g — A1 near —oo. If so, then we define

analogously

To — Ao e 71— A1 i F#oo,0)(uo, u1) Z #i(up,u1) Iis finite, (7.8)

j—foo

To—Ao ~ 1 — N if F#(—00,00] (U0, u1) Z #;(ug,u1) s finite. (7.9)

]_—OO
Lemma 7.3. Let by —by,b1 —ba and by — by be sign-definite at 0 near +o0, then

TNO+ TNO+ TNno+
T0 ~ T, TL Y Ty = Tg ~ Ty (7.10)

If moreover by = b1 = bs near +oo, then

T0 ”}3 Ty —> 7o ”}Si T1,T1 T%i T2. (711)
Proof. We have [#0 ) (t0, u2) — (#0,n] (00, u1) + #0,n) (11, u2))| < 1 for all n
by the triangle inequality. If by > by > by, then the nodes of the Wronskian are
weighted positive near co. O

Lemma 7.4. If g — X\g T T1 — A1, then there exists an N such that

Wy (ug,ur) >0,  Wp(ug,u1) <0, or Wy (ug,u1) =0

holds for all n > N, i.e. the Wronskian is of one sign near co.
T™Nno_—

The same holds near —oco if 9 — N\g ~ 71 — A1.
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Proof. Tf W, (ug(Xo),u1(A1)) = 0 for all n > N the claim holds obviously. If not,
then by 79 — Ao "X 71 — Ap there exists an N € N such that Wi (ug,u1) # 0,
#n(ug,u1) = 0 and bo(n) — A\g — b1(n) + A1 is of one sign for all n > N.
The Wronskian cannot change sign at some m > N. Moreover, W (ug,u;)
cannot vanish at some interval m, ..., n, where m > N,n > m, since if so, the
Wronskian has a node either at the beginning or at the end of the interval since

bo — Ao — b1 + A1 is of one sign. Analogously, for the —oco-case. O

Thus, if 70 — Mg '~ 71 — A1, then the following limits exist:

#(—oo,oo] (U‘Oaul) = nlggo #(—n,n] (UO,Ul) (712)

1 if W(ug,u1) =0 near —oo
= #[—oo,oo] (u07u1) - .
otherwise,

#[,Oo’oo)(uo,ul) = lim #[,n’n)(UQ,ul) (7.13)

n— oo

1 if W(ug,u1) =0 near co
= #[700,00] (u07u1) + .
otherwise,

and

#(—oo,oo)(uoaul) = lim #(—n,n)(uoaul) (714>

n— oo
1 if Wo(up,u1) =0 near —oo

= #[—oo,oo] (UOaul) - .
0 otherwise

1 if W(ug,u1) = 0 near oo

0 otherwise

and analogously for a finite endpoint

#(0,00) (10, ur) = m_ (o ] (10, 1), (7.15)
#0,00) (U0, u1) = nlgTolo #0.n) (U0, u1), (7.16)
#(0,00) (U0, u1) = 1m0,y (o, u1)- (7.17)

If limy, 00 Ab(n) = z, then Ab is sign-definite if it is sign-definite at z. We
abbreviate

bo L by (7.18)

(or by 1 b1) near oo whenever lim,_,oo Ab(n) = 0 and Ab > 0 (or Ab < 0)
holds near +oo.

Remark 7.5. If W(ug,u1) vanishes at some interval m,...,n, then it could

65



be possible that #,—1(ug,u1) = 0, #n(uo,u1) = 0 and #p_1(u1,u0) = —1,
#n(u1,u0) = 1. Hence, if Ab oscillates and #10,00] (U0, u1) exists, then the sum

#10,00] (U1, u0) doesn’t have to exist, i.e. we could have

lim sup # o n) (u1, uo) # lim inf #(o, (u1,u0). (7.19)

n—oo

This could also happen near —oo. Thus, to obtain our main theorems we assume
that the perturbation is sign-definite near +00 and near —oco, hence only the case
where by | by or by T by holds is considered in the sequel, although some claims
also hold if we just assume by — by provided the limits exist.

Lemma 7.6. Let by | by or by T by near 00 and 19 — Ag ek T1 — A1.

If \g # A1, then there exists an N such that
Wi (uo(Ao), u1(A1)) # 0 (7.20)

holds for all £n > N.
If A\g = A1, then there exists an N such that either

e uy and uy are linearly independent near oo and W, (ug,u1) # 0 or

e ug and uy are linearly dependent near oo and W, (ug,u1) =0
for all £n > N.

Proof. Let Ao # A1 and suppose the claim does not hold, then by Lemma 7.4
there exists an N such that W, (ug, u1) = 0 for all m > N. Then, by (3.14) we

have either
bo(m) —bi(m) =Xo— A1 or wg(m)=wui(m)=0 (7.21)

for all m > N which contradicts lim,, o (bg — b1)(n) = 0 since the zeros of ug
are simple and Ao — A1 # 0. O

TNO4+

Lemma 7.7. Let by | by or by 1 by near £o0o and let \g = A\1. If 7o — Ag ~
T1 — A1, then the solutions ug(Ao) and ui (A1) are linearly independent near oo

and have at most finitely many common zeros near +oo.

Proof. Suppose there are infinitely many points j € N such that wug(Xo,j) =

u1(A1,7) = 0, then Wj(uo,u1) = a(j)(uo(j)ui(j + 1) — ur(j)uo(j + 1)) = 0,
which contradicts Lemma 7.6. The same holds near —oo. O
Recall the following
Theorem 7.8. [/2, Cor 4.18, Cor. 4.20]. Let Ao < A1, then

tr(Ppoany(He)) <00 <= T—Xg ~° T— A, (7.22)
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tI‘(P(AO,)\l)(H)) < o0 < T — Ao - Al (723)

As a small application thereof we notice the following

Theorem 7.9. Let tr(P._ ., (Hy)) < oo, 2_ < 24, and let H,, be the leading
principle submatrices of the semi-infinite Jacobi operator H,. Then, there are

at most finitely many n such that z_ and zy both are eigenvalues of H,,.

Proof. The solutions u_(z_) and u_(z4) have at most finitely many common

zeros near oo by Lemma 7.7. O

Finally, we now obtain the main findings of this chapter, namely criteria for the
finiteness of the number of nodes of the Wronskian. Therefore we consecutively

investigate the possible Wronskians on the half-line and on the line.

Theorem 7.10. If by | by or by 1 by near £00, A\, Ao, \1 & 0ess(HY), and
Ao < A1, then

TNo+

TofA ~ T1 — A (724)

and
oL+

T0 — )\0 ~ T] — )\1 < [/\07 )\1} N O'ess(Hi) = 0. (725)
Proof. Let by | by near oo, then, since the essential spectrum is a closed subset
of R, we have [\, X + ] Noess(HY) = 0 for some £ > 0. Hence, by Theorem 7.8
we have 7o — A~ 19— (A +¢€). Moreover, by — A = by — A = by — (A+¢) holds
near oo and hence by (7.11) we have 70 — A '~ 71 — . For the by 1 b-case
just interchange 1y and 77. Clearly, the same holds near —co.
Now, consider the second claim: by Theorem 7.8 we have [Ag, \1] N oess(HY) =
) = 7'0 —Xo =" 79 — A1. Moreover, by (7.24) we have \; & oess(HY)) =
To— /\1 ~" 71 —\1. Hence, by (7.10) we have 79 — Ao ot 71 — A1. On the other
hand, suppose 7'0 - )\0 T%M 71 — A1 holds, then by A1 € 0ess (HO) and by (7.24)
we have 11 — )\1 ~" 79— \1. Hence, again by (7.10) we have 19— Ag v To—A1.
Thus, Theorem 7.8 implies tr( (AO,)\l)(Hg)) < 00 and Ao, A\ & 0ess(HY) proves

the claim. The same holds near —oco. O

Theorem 7.11. If by | by or bg T by holds near oo and by | by or bg T by holds
near —o0, A\g < A1, and A\, Ao, A1 € 0ess(Hp), then

To—/\rfr\LfoTl—/\ (726)

and
T0 — )\(] oy T — )\1 < [)\(], )\1] n Jess(HO) = @ (727)
Proof. By 0ess(Ho) = 0ess(H?)Uaess(HY) and (7.24) we have 79—\ ~" 71—,

rno+

hence the first claim holds. If 79 — A\g '~ 71 — Ay holds, then 7 — \g ~

no_—

7 — A and 70 — Ao~ 7 — A; hold. Thus, [Ao, \1] N ess(HY) = 0 holds
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by Theorem 7.10 and hence again by o¢ss(Ho) = 0ess(HY) U USSS(HS)F) we have
[Ao, AM]Noess(Ho) = 0. On the other hand, if [Ag, A1]Noess(Ho) = 0 holds, then
clearly again by Theorem 7.10 the second claim holds. O

We remark that A € o.5(Hp) does not imply that 79 — A and 7, — \ are relatively
oscillatory since we actually have 70 — A "~ 75 — A. In the next step we consider

spectral intervals with boundaries attaining the essential spectrum.

Theorem 7.12. Let by | by or by T b1 near £oo and let A < .
If tr P(A,X)(Hi) +tr P(A,X)(Hi) < 00, then

T()*A‘N Tlfx and TofxrnNOi’ﬁ*)\ (728)

To—A ~ T— A &= Py (HY) Ftr Py 5 (HL) <oco.  (7.29)

If bg 1 b1 near +oo, then

— TNo+

To—A ~ T1—A <~ trP(A,X)(Hi) + trP(Aj)(Hi) < 00. (730)
Proof. Let by | by, then by > by = by — (A — A) = by — (A — A) near o0, hence

bo—A=bi —A=by—A=b — A (7.31)

TNO4+

near -too. Suppose we have tr P, 5 (HY) +tr P, 5)(HL) < 0o, then 7o — A~ ~
0o —Xand 7 — A~ 7 — X holds by Theorem 7.8. Hence, by (7.11) we have

To— A~ = AT =X =X (7.32)

and thus (7.10) proves the claim. On the other hand, if 79 — A TRE 71 — A holds,
then by (7.31) and (7.11) we have 70 — A '~ 7o —Aand 71 — A~ 7 — A,
thus the claim follows from Theorem 7.8. For the by 1 bi-case just interchange

70 and Ty. 0
Now, we'’re ready for a proof of Theorem 1.3:

Theorem 7.13. Let by | by or by 1 b1 and let A < A.
IftI‘P(A’X)(H()) + trP(A,X)(Hl) < 00, then

To—-A"~" 71—\ and 10—\~ —\ (7.33)
If bg | b1, then
0= AN T =X &= trP, 5 (Ho) +tr Py, 5)(Hi) < oo (7.34)
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If bo T bl, then

N Tno

To—A ~ T —A <= trP(Aj) (Hp) + tr P(A,X)(Hl) < 0. (7.35)

Proof. Let by | by or by T by and tr P(A,X)(HO) + tr P(A,X)(Hl) < o0, then by

o

Theorem 7.8 we have tr(P, ) (Ho)) < 00 = 79— A ~ 7o — A1, thus
70— Ao~ 7 — \. Hence, tr(Pirg,x,)(HY)) < oo. The same holds for Hj.
Thus, the first claim holds by Theorem 7.12.

If by | b1, then 79 — XA '~ 71 — X implies 79 — A " 71 — A and hence by
Theorem 7.12 we have tr P(A,X)(Hi) + tr P(A,X)(Hi) < oo0. Now, we conclude
from Theorem 7.8 that tr P, 5)(Ho) + tr Py 5)(H1) < oo. This proves the

second claim. To obtain the third claim just interchange 79 and 7. O

+

Remark 7.14. Let Mg, A1 € Q =R\ 0ess(HY) and by | by or by T b1 near +oo.
Then, 790 — Ao TRE 71 — A1 iff Ao and Ay are in the same connected component

of Q.
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Chapter 8

Approximation

In this chapter we approximate Jacobi operators on the half-line (and their
Weyl solutions w4 ) by finite Jacobi matrices (and solutions fulfilling a Dirichlet
boundary condition on the right-hand side). To simplify notation we use semi-
infinite matrices instead of finite matrices to approximate Jacobi operators on
Z.

8.1 ...of infinite matrices and their spectra

At first we show how to alter a boundary condition of a finite (or a semi-infinite)
Jacobi operator such that it is then fulfilled by a particular Weyl solution. This
doesn’t have to be possible for all indices n, hence we choose a suitable index
set _#,. Therefore, let v € ¢(N) such that

Jv={neN,n>2[v(n-1)+#0} (8.1)
is an infinite set and let b, € ¢(N),

a(n—1)v(n) ifn e /v

by(n—1)=¢ V=D (8.2)
0 otherwise.
Analogously, let w € £(N) such that
Fw={me-Nm< -2]wm+1)#0} (8.3)
is an infinite set and let b, € ¢(—N),
a(m)w(m) itme
by(m+1) = ¢ wm+D H (8.4)
0 otherwise.
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Now, we alter the Jacobi matrices introduced in (2.43) and (2.44) such that

HY = Hyp + diag(by(n — 1)0, 1), (8.5)
Hy, = Hp o + diag(by(m + 1)0n41). (8.6)

The Jacobi matrices Hy , and H,, 4 correspond to 7, hence, H is the Jacobi
matrix corresponding to 7, = 7 + b,(n — 1)d,_1, i.e.

a(n —2) b(n—l)—i—%

and H,, | is the Jacobi operator corresponding to 7, = 7 + by (m + 1)0my1,
that is

b(m+1)+% a(m+1)

a(m+1) b(m+2) a(m+2)
oY, = . (8.8)

alm+2) bm+3)

As v/w we'll always use a Weyl solution @, /_(z) € £>(£N) of a Jacobi difference
equation 7u = zu where a = a holds. In the special case where v and w are Weyl
solutions of Tu = zu we abbreviate H; and Hj, . For notational convenience
we then moreover abbreviate the corresponding index set as _Z, since it will
always be evident from the context if we use #, or _#,. Although u4(z) is
only unique up to a multiple, the index set #3, (.) is unique and independent
of the chosen multiple. Moreover, #;_ () is an infinite set since @ (z) cannot
have two consecutive zeros.

Whenever we add a boundary condition to a Jacobi operator, the corresponding
spectral parameter z is in a gap of the essential spectrum and thus the Weyl
solutions w4 (z) always exist by Lemma 2.25.

We remark that we could also use the matrices

v o= Hm,o + diag(by (m + 1)6p11), (8.9)
HY = H-_, + diag(b,(n — 1)d,—1), (8.10)
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or even
Hy? = Hpp o + diag(by (m 4 1)0p41) + diag(by (n — 1)d, 1) (8.11)

as approximating sequences in the sequel. For notational convenience and to
obtain our main theorem for H and H; we go up the half-line to H, and then
back the other half-line to H.

Definition 8.1. Let £2(Ny) denote the linear spaces of all sequences with com-

pact support equipped with the ||.||2-norm.

The set £3(Np) is a dense meager set in the second category set ¢2(Np).

Lemma 8.2. We have (3(Ny) = ¢*(No) and €3(No) is a core of H.

Proof. Clearly, (2(Ng) C ¢?(Np) holds. Since ¢?(Np) is a Hilbert space, and
hence closed, we have ¢2(Np) C ¢2(Np). On the other hand, let z € ¢*(Np) and
let

(m) z(m) ifm<n (8.12)
xTp(m) = :
0 if m > n,

then z,, € £3(Np) for all n and lim,,_, ||z, — 2|2 = 0. Hence, every x € £2(Np)
is the limit of a sequence of elements of £2(Np) and thus ¢?(Ng) C ¢2(Np). Since
3(Np) is a dense linear subspace of £2(Ny) and H is bounded, ¢§(Np) is a core

of H,, therefore confer Section 2.3. O

Analogously we define the space £3(Z), which is a core of H, and ¢2(—Ng), which

is a core of H_.

Lemma 8.3. Let zop € R. Ifv € {(N), then, as n — oo,n € _7,,
HY @zl >3 Hy and HY,®zl> H. (8.13)
If w € £{(—N), then, as m — —oo,m € _Zy,
wle HYy > H_ and  zleHy | = H. (8.14)

Proof. We only carry out the first claim: by Lemma 8.2 9 = (3(Np) is a core
of H,. Moreover, for all ) € %, there exists an ng(y)) € N such that ¥ (j) =0
for all j > no(¢). Hence, (H}, @ zol)yp = Hy 4 for all n > ng(y) +1,n € _7,.
Hence, H® ® 201 2% H, now follows from Theorem 2.21.a. O

In fact we even have strong convergence in the previous lemma, which (in
the case of bounded operators) implies strong resolvent convergence, see The-
orem 2.21. But the previous proof remains valid even if the operators are un-
bounded.
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8.1.1 Open and half-open spectral intervals

From now on we assume
[z, 24 Noess(H) =0, 2- < z4. (8.15)

By Oecss(H) = 0css(H-m) U Ocss(Hpm, 1) and since H,, , is a rank one pertur-
bation of H,, 4, we then also have [z_, 24| N 0ess(Hpm,4) = 0 for all m € _7,,.
Due to strong resolvent convergence (which we’ve shown to hold independently
of the modified boundary condition) we easily obtain the following inequality

on open spectral intervals.

Lemma 8.4. Ifv € {(N), then

liminf (P sy () > (P oo (L)) (5.16)
ne oy

If w € ((N), then

liIilinftI‘(P(Zﬂz+)(H;U%+)) = tI‘(P(ZﬂZ+)(H)). (817)

me fw

Proof. Let zg € R, z9 & [2—, z4], then by Theorem 2.9 HY @ 2l is self-adjoint
and o(HY @ zol) = o(HY) U {20} holds. Thus, by Lemma 8.3 and Lemma 2.19
we have

liminftr(P,_ ., )(Hy)) =liminftr(P._ ., )(H, © 20l) > tr(P;_ 2, ) (Hy)).
ne v ne v

The second claim can be obtained analogously. O

We notice that in some cases this is indeed a strict inequality, therefore consider
the following example.

Remark 8.5. Let [z, 2] No(Hy) =0 and let v be a solution of (T — 2)v =0
such that v(2,0) =0,z € (2—,24). Then, z € o(H})) for alln € #, and thus

linHLiOIOlftI‘(P(zﬂz+)(Hﬁ)) > tI‘(P(ZﬂZ+)(H+)) =0.
ne gy

Recall the following lemma from functional analysis:

Lemma 8.6. [/2, Lemma 4.6]. Let z_ < zy, A € L(I) be self-adjoint on a
(separable) Hilbert space 5€. Let w; € 5,1 < j < k, be linearly independent.

If for any linear combination w = Z?Zl cjwj #0

AR A 2y — 2

1(A

Jwll < [l (8.18)

holds, then dimRan P, . y(A) > k.
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With the help of the previous lemma we’ll now show that in all cases we're
interested in (that is, we allow the boundary condition to come from a Weyl
solution of a foreign operator which is not too far away) the previous inequalities

cannot be strict.

Lemma 8.7. Let v = 14 (\) and w = a_(\) be Weyl solutions of (T — \)u = 0.
If A+ b(j) — B(]) € lz_,zy| for all j =2 n, n€ fZ,, then

(Pl o) (HY) < (P (HL)). (8.19)

IfA+b(j) — b(j) € [2—, 24] for all j < m, m € F,, then
tr(Pr._ ., (HY ) < tr(P_ ., ) (H)). (8.20)

Proof. Let n € _#, such that A+ b(m) — b(m) € [z_,zy] holds for all m > n
and let e, ..., e be the eigenvalues of HY in (z_, z4) with corresponding or-
thonormal eigenvectors 1, . .., 4y, k > 0 (otherwise the claim holds obviously).

To every eigenvector ;,j = 1,...k, we choose a sequence w; € £2(N) such that

wj(m) fl<m<n-1

w;(m) = (8.21)

vitg (A, m) ifm>=n—1

holds, where ; € R\ {0} is chosen such that ;i (A\,n — 1) = @;(n — 1) holds.
We have 12+(;\, n—1) #0byn € #,. Thew;’s are linearly independent elements
of 2(N). Now, let ¢ = 3-% | cjw; # 0,¢; € R. For all m > n — 1 we have

k
w(m) = chf)/ja-‘r(;\’m) = ca+(;\,m),
=1

where ¢ = 2?21 ¢jvj. Thus, for all m > n,

(Hy)(m) = e(Hy +b(m) —b(m))iy. (A, m) = (A + b(m) — b(m))i)(m).

Hence, by A 4 b(m) — b(m) € [z_, z,] for all m > n we have

S = ZE)0) m) = 37 A+ bm) = bm) — 2= Pl(m)?

oo
Z4 — 2Z-
<(F5) D lem)f.
For all j =1,...k, we have

(Hyw;)(n— 1)

(0]



= a(n — 1)y (A n) 4+ a(n — 2)@;(n — 2) + b(n — 1)i;(n — 1)
a(n —1Dag (A, n)

= (Hyi;)(n — 1) + a(n — 1)y;uq (A n) — o oY tj(n—1)
= e;iij(n — 1) + a(n — 1)y;iq (A, n) — vja(rgj—(;)_u;)(k, n) @j(n —1)

= e;tj(n—1)

and (H+wj)( ) = (HYu;)(m) = eju;(m) forallm=1,...,n—2.
Let 1/} = Ylg(o,n), then (uj,w = ¢j. Let P e span{dy, ..., U} such that

(i, ®) = (ej — Z42-)¢;, then by Parseval’s identity we have

n—1 n—1| k
>l = =5 = 3 >l (= 2225 ;) (m)

n

1| k etz ,
=N CE 5 )eiw;(m) = || ZWJ’

m=1|j=1

k

=Y le; - ZEE) Pl B

j=1

k

< (B2 Yo B2 = (=) = Zw

2

j=1

by e; € (z_,z4). Now, the claim holds by Lemma 8.6 and

z++z_

I(Hy — ol

iu(m - E2E ) m + Y IH - ) m)
=1

2

m m=n

)27

< (=£

For the second claim let ey,.. ., ex be the eigenvalues of H}) | in (z_,24) with
corresponding orthonormal eigenvectors 1, .. ., Uy, k > 0. To every eigenvector

i@;,7 =1,...k, we choose a sequence w; € ¢*(Z) such that

if m+1<
) = (8.22)

i(n
viu—(An) fn<m+1

holds, where v; € R\ {0} is chosen such that ~v;i_(A,m + 1) = @;(m + 1).
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Again, for all linear combinations 1 of the w}s we have

“ ARG 2y —2_ -
ol - = 5V < ( = 5 ) > )P (8.23)
by A+ b(n) — b(n) € [z_, z;] for all n < m and
= Zy +z- 2y —2_ >
Sl - < (2 Y pmP. (s29)
n=m-+1 n=m-+1
O
Thus, of course we have equality now:
Lemma 8.8. Let v =t (\), w=a_(\) be Weyl solutions of (7 — )i = 0.
If A+ b(j) — b(j) € [2—, 24] near co, then
T (P 2y () = (P (H4)). (3.25)
ne Zy
If A4 0(5) — b(j) € [2—, z4] near —co, then
im tr(P_ oy (Hy y)) = (P 2y (H)). (8.26)
me Fuw

Proof. By Lemma 8.7 limsup n tr(Pr._ -,y (Hy)) < tr(P;_ ..)(Hy)) holds
and by Lemma 8.4 we have liminf:;;o tr(P._ - (Hy)) = tr(Pe_ . (Hy)).
Thus, the limit exists and the first claim holds. The second claim can be ob-

tained analogously. O

We point out the following special case to which we’ll frequently refer in the

sequel.

Corollary 8.9. Let uy () be Weyl solutions of (T—XN)u =0, X € [z—, z4], then

lim tr(P._ ., (Hp)) = tr(P._ ., (Hy)), (8.27)
ne 7y
and
mlirflm tr(P(zf,ZJr)(Hv)‘r\h-&-)) = tr(P(zf,er)(H))' (828)
me g

It can easily be seen that under certain assumptions we even obtain equality at
half-open spectral intervals, a very helpful lemma for our subsequent investiga-
tions.
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Lemma 8.10. Let v = iy (\), w = a_()\) be Weyl solutions of (7 — A)i = 0.
Then,

JHTOIO tr(P(z77z+](H5)) = tr(P(z,,z+](H+))7 (829)
ne oy
i (P (HY L)) = (P2 () (3.30)
me Fw

holds if X+ b(j) — b(j) | 24 as j — +oo and

}H]glo tr(P[z_,Z+)(Hﬁ)) = tr(P[z_,Z+)(H+))7 (8.31)
ne gy
mEIPN tr(P{z_yz_*_)(H;}%Jr)) = tI(P[Z_’Z+)(H)) (8.32)
me fw

holds if A+ b(j) — b(j) T z_ as j — +oo.

Proof. Let € > 0 be sufficiently small such that [z— — &, 24 + €] Noess(Hy) = 0.
Suppose lim;_,oo A+ b(5) — b(5) | 24, then A +b(5) — b(j) € [24, 24 + €] near oo
and hence by Lemma 8.8 we have

lm tr(Pe_ 2, 1e)(Hy)) = t0(Pla_ 2y o) (Hy)),
ne fu

,IILH(}Q tr(P(z+,z++e)(HZ)) = tr(P(z+,z++e) (Hy)).
ne fv

The same holds for Hy, . For the second claim use A+b(j)—b(j) € [z —e,2_]

near 0o and Lemma 8.8 again. O

The following is an important special case, also for half-open intervals.

Corollary 8.11. We have

,}EHEC (P2 (HyH)) = tr(P_ 2, (Hy)), (8.33)
Mim tr(Pe o (Hy ) = te(Pe_ 2 (H)), (8.34)
e 7

and
,}g} tr(Pe_ o) (Hy ) = (P 2y (Hy)), (8.35)
lim (P, ) (Hy, ) = (P2 (H)). (8.36)
e u

8.1.2 A point

We discuss whether or not a point is an eigenvalue of the approximating matrix

(with a modified boundary condition coming from v/w) and how this question
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is answered by the Wronskian.

Lemma 8.12. Let v be a solution of (F —A)v =0 and n € Hv. Let m € Z,
then,

ANeo(HS,) <= W i(m(M),v)=0, (8.37)

where ¥, (X) denotes a solution of (T — ANy, (X) = 0 such that ¥, (A, m) = 0.
Moreover,
Aeo(H?,) <= Wy ai(u-(\),v)=0, (8.38)

where u_(A) denotes a solution of (T — N)u_(\) = 0 which is square summable

near —oo.

Proof. Since the difference equations 7 and 7, coincide below b(n — 1) there
exists a solution ¥(\) of (7, — A)yp = 0 such that ¢, (A, 7)) = (A, j) for all
m < j < n. Moreover, ¥(A\,n) =0 < X € o(H}). We have

— a(n—1)p(n)
=a(n—2)Y(n—2)+ (b(n—1)+ w - NyY(n—1)
B a(n — 1)v(n) .
(= V() + 2 0 1),

thus,
70‘(” - 1)7/1(”)7)(” - 1) = Wn—l("l)m()‘)fu)'

For the second claim let ¢(\) be a solution of (7, — )¢ = 0 such that u_(\, j) =
P(A, j) for all j < n. O
Z

Lemma 8.13. Let w be a solution of (f —Nw =0 and m € #,,. Letn €
then,
Aeo(Hy,) =  Wn(w,¢a(N)=0, (8.39)

where P (N) denotes a solution of (T — N)Yp(A) = 0 such that ¥, (A,n) = 0.
Moreover,
Aeo(Hy ) = Wap(w,ur(N) =0, (8.40)

where uy (A) denotes a solution of (T — Nuy(N) = 0 which is square summable

near —oQ.

Proof. Since the difference equations 7 and 7, coincide abow b(m + 1) there
exists a solution ¥ (A) of (7, — A)yp = 0 such that u,(\,j) = ¥(A,j) for all
m < j < n. Moreover, (A\,m) =0 <= X € o(H,,,). We have

—a(m)y(m) =a(m+ DYp(m+2)+ (b(m+1) + wim+ 1) A(m+1)
a(m)w(m)
—a(m)yn(m) + m Yn(m + 1),
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thus,
—a(m)y(m)w(m +1) = Wi (w, ¥n(N)).

For the second claim let () be a solution of (7,,, — )% = 0 such that uy (), j) =
W(A, j) for all m < j. O

This leads us again to the following important special cases which should be

mentioned separately.
Corollary 8.14. We have

A€ o(Hy) <= € o(H)) for one (and hence for all) n € 7y,
Aeo(H) <= e U(Hz‘%_‘_) for one (and hence for all) m € Z5.

Proof. By Lemma 8.12
A€ o(Hy) < W(ho(N),us(N)) vanishes
holds, respectively by Lemma 8.13 we have

A€o(H) < W(u_(N),ur(N)) vanishes.

Clearly, Corollary 8.9 and Corollary 8.14 also imply Corollary 8.11.

Corollary 8.15. Let v be a solution of (T —ANv =0 andn € #,. Let A €
ca(Hy), then,
A€o(H)) — Wy_1(us(N),v) =0,

where us () is the corresponding eigensequence of H .

In particular, it can now easily be seen that a point is at most finitely many
times in the spectrum of the approximating matrices if the boundary condition

comes from a Weyl solution corresponding to some foreign spectral parameter.

Lemma 8.16. Let b [ b or b1 b, M\ & 0ess(Hy), and X\ # .
Fiz somem € Z. If T — X' ~" 7 — X and v is a solution of (7= N =0, then

Ago(H” ) and Ngo(Hy,,) (8.41)

for allm € 7, sufficiently large.

Fiz somen € Z. If T — X'~ 7 — X and w is a solution of (7 — N)w = 0, then
Ago(Hy ) and Ngo(Hpy,) (8.42)
for allm € _#,,, |m| sufficiently large.
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Proof. By Lemma 7.6 and XA # X we have W (u_(\),v) # 0, W(m(A),v) # 0
near +oo and W(w,uy) # 0, W(w,,) # 0 near —co. Now use Lemma 8.12
and Lemma 8.13. O

8.2 ...of the Wronskian with suitable boundary

conditions

We approximate a Wronskian which consists of solutions fulfilling the left /right
boundary condition of two (different) Jacobi operators on the half line (and in
the second step on the line) with Wronskians of solutions fulfilling the left /right
boundary condition of the two (different) approximating problems and compare
their number of nodes. In contrary to the next section we assume that one of the
approximated solutions generates the boundary conditions of the approximating
problems.

We'll later reuse the notation introduced here, thus, for the convinience of the

reader, we split our considerations in two parts: the half-line and the line.

8.2.1 Nodes on the half-line

Consider the following setting: let
H @zl 3 H, and H’®zI35 H,,

n € _#,, where the boundary conditions of the approximating matrices are
generated by a Weyl solution v corresponding to one of the two semi-infinite
Jacobi operators, namely to Hy. Recall from (8.7) that

To=T+by(n—=1)8,1 and 7 =7 +by(n—1)8,1

are the difference equations corresponding to the approximating matrices. Let
¥n,j(A) be a solution of (7, — A)1 = 0 such that i, ;(A,j) = 0.

o4

Lemma 8.17. Letb [ b or b1 b near oo, 7— X\ ~' 7— X, and v = uy(N), then

nlggo #[O,n] (&n,o (5‘)7 wn,n ()‘)) = #[0,00] (ﬂ* (5‘)7 U+()\)),
nh—>Holo #[O,n] (wn,n()‘)v T;n,O(S‘)) = #[O,oo] (U+(/\), U (5‘))’

where u_ denotes a solution fulfilling the left Dirichlet boundary condition of
H,, that is, u_(0) = 0.
The same holds if we replace #o,.) on both sides by #o..), #(0,], oT #(0,)-

Proof. Let n such that by Lemma 7.4 the Wronskian W (a_ (), u4(A)) is of one

sign above n — 1. Since the difference equations 7 and 7,, coincide below n — 1
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the solutions 1, o(A) and @_()) also coincide (up to a multiple) below n — 1.
The same holds for ¢, () and u4(A\) by v = uq(A). Thus, without loss (pick
suitable multiples),

W (Jjn,o(:\)a q/}n,n(/\)) = Wn (ﬁ— (A)v U+()\))

holdsatsz,...,n—Zandmoreoveratm:n—lbyE’L—b”:I;—band

W1 ($n,0(X), ¥nn(N))
= W2 (¢n,0(N); $nn(N))
+ (0" =) (= 1) + A= XN)ihno(n — 1), ¢ n(n — 1)
=Wy a(i_,uy)+((b=b)(n—1)+ A= Na_(n—1uy(n—1)

= n—l(ﬂ—au-‘r)'

We have W, (¢ 0(\), ¥nn(N) = W,

~1(¥n,0(A), Ynn(A)) BY ¥ n(n) = 0, hence
the first claim now holds by #,_1(a_(}),

(
uy(A)) =0 and

Wn(z/;n,o(j‘% ¢n,n(A)) = Wn—l(lzjn,()(s‘)v wn,n()‘)) = Wn—l(a—()‘)v U+(>\))
The second claim holds analogously. O

Hence, we have seen that the Wronskians corresponding to the approximating
finite problems in the limit have equally many nodes as the Wronskian cor-
responding to the semi-infinite operators. This comes from the fact that the
boundary conditions have been generated carefully.

The following corollary states that for Wronskians of solutions corresponding to
different spectral parameters we can slightly ease the counting method since we

already know that in this case the Wronskian cannot vanish near oc.

TNO4 .

Corollary 8.18. Let b | borb T b near 00, T—A ~ T— ;\, A £ 5\, and
v =us(N), then

1m0, (Vn,0(N), P (V) = Hpo,00) (= (V) 1+ (V)

nh~>nc}o #[O,n) (d}n,n()‘)? 1/;71170(5‘)) = #[O,oo] (U+()\), U (5‘))

where u_ denotes a solution fulfilling the left Dirichlet boundary condition of

H,, that is, u_(0) =0, and the Wronskians don’t vanish near +o0.
The same holds if we replace #0.,) by #(0,n) and #(0,00] bY #(0,00]

Proof. Use Lemma 8.17 and Lemma 7.6. O

And of course we now already get a first equality between the spectra of (this

specific sequence of) finite matrices and the Wronskian on the half-line.
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Lemma 8.19. Letb | b or b1 b near oo, T— X ~" 7=\, and v = ug (\), then
there exist sequences of approximating matrices (which depend on the spectral
parameter) such that

B o) (H2) = Eoo x)(Hp) = #(0,00) (u (V) 71— (X)), (8.43)

B ooy (HY) = By (HO) = #0 o (i-(Woup (V) (844)

for alln € _Z, sufficiently large, where u_ denotes a solution fulfilling the left
Dirichlet boundary condition of Hy, that is, u_(0) = 0.

Proof. By A & 0ess(HY) the Weyl solution and hence also the approximating
matrices exist. For the first claim use

E(—oo,ﬂ)(g;)) - E(foo,)\] (Hri\) = #(O,n] (wn,n()\)>1/;n,0(5\)>

from Theorem 1.5 and Lemma 8.17. For the second claim use

E(oony(HD) = B 5y (H}) = #0.0) (Pn,0(X), ¥ n(V))-

8.2.2 Nodes on the line

Let
wleHY 5 H and zle Hy 5 H,

m € _#.,, where the boundary conditions of the semi-infinite Jacobi operators
are generated by a Weyl solution w corresponding to the infinite Jacobi operator
H. Recall from (8.8) that

Tjim = Tj + bw(m + 1)§m+1 and 7~—j,m = 7~—j + bw(m + 1)6m+1

are the difference equations corresponding to the semi-infinite operators and let
Ym,m(A) and ¥, +(A) be solutions of (7, — A) = 0 such that

Gmm(Am) =0 and ¢y 4 (A) € Z(N).

In a similar manner we now show that, from some point on, each of the (suitably
choosen) Wronskians corresponding to the approximating problems on the half-

line has equally many nodes at [m, o] as the Wronskian of two Weyl solutions.

T™NOo ~

Lemma 8.20. Let b | borb 1T b near +0o and near —00, T— A ~ T— 5\, and
w=u_(X\), then

lim #[m,oo] (wm,m()\)vd;m,Jr(S‘)) = #[—oo,oo] (u*()‘)v'a#*()‘)),

m——0oQ0
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B # o) (D (N)s P (V) = F o0 ,00) (U (A), u_ (V)

m—r—0oQ0

where u_ denotes a solution fulfilling u_ € (*(=N). The same holds if we
replace #o,.] on both sides by #10.., #(0,]; OT #(0.n)-

Proof. Let m such that by Lemma 7.4 the Wronskian W (u_(X), 44 (X)) is of
one sign below m + 1. Since the difference equations 7 and 7, coincide above
m + 2 the solutions 9, 4 (A) and @ (A) also coincide (up to a multiple) above
m + 1. Moreover, a solution 9 of (7,, — A)¥» = 0 which coincides with u_())

above m is a multiple of ¥, ,, () by

— a(m)y(m)
= a(m + 1)d(m +2) + (b(m +1) = Ao + Cﬁ”nluﬁ%) Jb(m + 1)
= —alm)u—(m M’U/ m =
= —a(m)u—(m) + T (m 1) =0, (8.45)

Thus, without loss (pick suitable multiples),

W; (wm,m(/\)al;mri-(j‘)) = Wi (u_(A), iy (X))
holds at 7 > m + 1 and moreover at j = m by

W1 (= (N), g (V) = Won (Y m (A); P, 4 (A))
= W1 (Gmm () Y (A) = Won (8, (A), o, 1 (N))
= (0" (m+1) =X =0"(m+ 1) + Nm.m(m + 1)y 4 (m + 1)
=B(m+1)=A=b(m+1)+ Nu_(m~+1)ay(m+1)

= W1 (u-(A), @y (N) = Win (u—(X), @y (V).

Thus,

#[m,oc] (1/Jm,m()‘)v &mﬁ(j‘)) = #[m,OO] (u* ()‘)7 ﬂ+()‘))

and 7 — A "~7 7 — X proves the first claim. The second claim can be shown

analogously. O

8.3 ...of the Wronskian with foreign boundary

conditions

The previous considerations will be enough to establish the relative oscillation
theorems below the essential spectrum. But for a proof of our main theorem in
gaps of the essential spectrum we further have to investigate the approximative
behaviour of the Wronskian of two solutions (of two different equations) where
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the Weyl solution v/w which generates the boundary conditions comes from
(one of the operators but) some foreign spectral parameter. This section can
be skipped for the proofs below the essential spectra in Chapter 9.
Recall that

Th =T+by(n—1)0p—1, n€ _Z,

and
Tm =T+ by(m+1)0pmi1, me _Fy

are the difference equations from (8.7) and (8.8).

In the first step we show that the solutions ¢, (z) corresponding to the finite
problems approximate the Weyl solution u4 (z) at finite sets due to the conver-
gence of the Weyl m-functions. Therefore, of course, we have to ensure that
the Weyl m-functions exist, which follows from our previous considerations, see

Lemma 8.16.

Lemma 8.21. Letv = 14 (2), 2 # 2, T — 2 - Z, I C 7Z be a finite set

and let uy (z) € 2(N) be a Weyl solution of (1 —z)u = 0. Then, for alln € g,
there exists a solution ¢ (2) of (Tn, — 2)n(2) = 0 such that @,(n) =0 and
lim ¢,(z,7) = uy(z,5) for all j € I. (8.46)

e sy
Proof. Let m < minI such that uy(z,m) # 0, let H,, + be a Jacobi operator
corresponding to 7 and let Hy, ,, be Jacobi matrices corresponding to 7,,. Then,
for some A # z we have Hy, , @& AL B Hpy,2€p(Hp ), and z € p(Hy, ) for
all n sufficiently large by Lemma 8.16 and Z # z. Hence, for all n sufficiently
large, the corresponding Weyl m-functions exist and m’} (z,m) — m4(z,m) as
n — oo by Lemma 2.32.
W.lo.g. let m =0 and let ¢(2), s(z) denote a fundamental system of 7 — z such
that ¢(z,0) = 1,¢(2,1) = 0 and s(z,0) = 0,s(z,1) = 1. Then, uy(z) is a linear

combination of ¢(z), s(z) and hence we have

) = w0 (0)e) + s (1)503) = al0)a (0)(@(0)eli) + = sl )
= a(0)u- (0)(a(0) () — m+ (2, 0)3(5))
for all j € Z by my(z,0) = (61, (Ho.+ — 2)7161) = _#j’(?o)' Now, let ¢, (2)

denote a solution of (7, —z)@, (z) = 0 such that ¢,,(z,n) = 0 and let ¢, (2), $,(2)
denote a fundamental system of 7,, — z such that ¢,(z,0) = 1,¢,(2,1) = 0 and
$n(2,0) = 0,8,(2,1) = 1. Then, ¢,(z) is a linear combination of ¢,(z), s,(z)
and hence we have

$n(1)

n(3) = 6n(0)en(f) + dn(1)sn(5) = a(0)pn (0)(a(0) ™ en(s) + a0)6n (0 ")
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= a(0)¢4(0)(a(0) " en(j) — Ml (2,0)80(5))

by m’ (z,0) = (61, (Hy,, — z)~'01) = 7%. The difference equations 7,

and 7 coincide at I for all n sufficiently large and hence we have

on () = a(0)pn(0)(a(0) ' e(j) — mli(2,0)s(j)) forall j € I.

By ¢,(0) # 0 and w4 (0) # 0 there exists an a,, # 0 such that ¢, (z) = a,¢n(z)
coincides with uy(z) at the point 0. Thus, for all j € I by

(Pn —up)(G) = andn(j) — ut(4) = a(0)uy (0)s(5)(my(2,0) —mli(2,0)) (8:47)
and lim:;;o; m(z,0) = m4(z,0) we have lim:;;z on(j) = ut(J). O

Remark 8.22. Let Hj ,, @ zol %% Hy 1, where v is a boundary condition corre-
sponding to some spectral parameter z # z and let p,(z) be the solutions from
the previous lemma such that v, (z) = uy(z) at a finite set I, which contains the
point 0. Then, by Lemma 8.16 we have z & o(Hy ), that is p,(z,0) # 0, for all
n € _#, sufficiently large, although we could have u4(z,0) =0, i.e. z € o(Ho 4 ).
If so, then Wy(uy(2),4—(2)) =0 and Wo(en(z),0—(2)) #0 as n — oo.

Hence, it can happen that, for all n € _Z, sufficiently large, the approzimating
Wronskians have one node more/less (depending on the counting method) than
W (us(2),4—(z)). Confer also Remark 10.4, Lemma 10.16, and Lemma 10.17.

Obviously, the same can de done in the other direction:

Lemma 8.23. Letw =a_(2),Z2# 2, T—z i 7—2,1 CZ be a finite set and

let u_(z) € £3(—=N) be a Weyl solution of (T — z)u = 0. Then, for allm € _#,

there exists a solution v, (2) of (Tm — 2)m(2) = 0 such that p,,(m) =0 and
lim ¢ (z,7) = u_(2,7) forall jel.

m— —oo

Proof. Let n > maxI such that u_(z,n) # 0, let H_ ,, be a Jacobi operator
corresponding to T and let H,; ,, be Jacobi matrices corresponding to 7,,,. Then,
for some \ # z we have A\l ® H; , RH ., z€p(H_,),and z € p(Hy, ) for
all |m| sufficiently large by Lemma 8.16 and Z # z. Hence, for all |m| sufficiently
large, the corresponding Weyl m-functions exist and m™(z,n) — m_(z,n) as
m — —oo by Lemma 2.32.

W.lo.g. let n = 0 and let ¢(2), s(z) denote a fundamental system of 7 such that
c(z,—1) = 1,¢(%,0) = 0 and s(z,—1) = 0,5(%,0) = 1. Then, u_(z) is a linear
combination of ¢(z), s(z) and hence we have

u—(j) = u—(=1)e(f) + u-(0)s(j) = u-(0)(s(j) — a(-1)
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=u_(0)(s(j) — a(=1)m_(z,0)c(4))

for all j € Z by m_(2,0) = (6_1,(H_ o — 2)"%_1) = —%. Now,
let ¢ (z) denote a solution of (7, — 2)¢m(z) = 0 such that ¢, (z,m) = 0
and let ¢,,(2), s, (z) denote a fundamental system of 7, such that ¢,,(z, —1) =
1,em(2,0) = 0 and s,,(2,—1) = 0, 8,,,(2,0) = 1. Then, ¢,,(2) is a linear combi-

nation of ¢,,(2), s;m(2) and hence we have

m(3) = bm(=1)em(d) + dm(0)sm(5)
= dm(0)(sm(j) — a(=1)m(2,0)cn(4))

by m™(z,0) = (6_1, (H g—2) " 10_1) = 7%. The difference equations

Tm and 7 coincide at I for all |m| sufficiently large and hence we have
$m(7) = om(0)(s(j) — a(=1)mZ(z,0)e(j))  forall j € I.

By ¢,(0) # 0 and u_(0) # 0 there exists an «,, # 0 such that ¢,,(z) =
m®m (2) coincides with u_(z) at the point 0. Thus, for all j € I by

(om —u-)(j) = u-(0)a(=1)c(j)(m—(z,0) = m™(z,0))

and limm—-s m™(z,0) = m_(z,0) we have limm——o @, (j) = u—(j). O

me _F me _Fw
Now that we have seen that the solutions corresponding to the approximating
semi-infinite problems converge to the Weyl solution (although we have a foreign
boundary condition) on a finite set and it remains to ask if the number of nodes
of the Wronskians coincide at some finite set.
And we will see that this number in general doesn’t coincide and the problem
arises from zeros of the Wronskian at the endpoints of the considered interval.
Therefore one can e.g. think at a Wronskian which vanishes (and hence has —1
nodes at each finite set). Such a Wronskian can be approximated by a constant,
nonvanishing Wronskian (which has 0 nodes on each finite interval).
To make this statement rigorously, in a first step we compare the number of
nodes of the solutions itself, and we will see that we cannot loose nodes of
solutions through approximation, since in the case of solutions we don’t count
zeros at the endpoints of the interval.

Lemma 8.24. Let p, and ¢ be solutions of Jacobi difference equations such
that p,(j) = ©(j) asn — oo forall j =k,...,l, then we have

#ea) (0n) = #ea) (0)

for alln sufficiently large and moreover, # .1y (on) = # 1) (0) if o(k), ©(1) # 0.
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Proof. Suppose @, (m) and ¢(m) are of the same sign for all m € I where
o(m) # 0. If o(m)p(m+1) # 0, then either both solutions have a node at m or
both solutions don’t have a node at m. If o(m) = 0, then by o(m—1)p(m+1) <
0 both solutions have exactly one node at m —1 and m. This proves the second
claim. Now,

#kr1,)(Pn) = #Fwt1,)(9) if p(k) =0,0() #0
#w)(Pn) 2§ #ei-1)(0n) = #xi—1) (@) if (k) #0,0(1) =0
#(k+1,l71)(90n) = #(k+1,l—1)(¢) if p(k) =0,¢(1) = 0.

O

The key ingredient of the subsequent proof is, that also the Priifer angles con-

verge at a finite set, which is now shown.

Lemma 8.25. Let p,, and ¢ be solutions of Jacobi difference equations such
that ©n(j) = ¢(j) asn — oo for all j = L —1,...,M + 1, then there exist
corresponding Priifer transformations such that

0, (m) = By (m)

forallm=0L,..., M.

Proof. Let n such that ¢, (m) and p(m) are of the same sign at all m € I where
p(m) # 0 and let m = min{m € I | p(m) # 0}, iee m =L orm = L+ L.
Consider the Priifer transformations with base point m, ie. 0,(m),0,, (m) €
(=, 7], then |0y, (m)/7] = |0,(m)/7] by ¢(m) # 0. Thus, b, (m) — 0,(m)
by

cot b, (m) = —alm)en(m + 1) — cot O,(m) =

on(m)

Let m=m+1,...,M + 1 where p(m) # 0, then
[0 (m) /7] = #(mm) () + [Op(m) /7] +1
= #(m.m) (Pn) + [0p, (m) /7] +1 = [0, (m)/7]
by Lemma 8.24 and

—a(m)pn(m+1)  —a(m)p(m +1)

ot (m) = == ) o

= cot O,(m),
thus 6,,(m) — 60,(m). Now, let m = m + 1,...,M such that p(m) =

po(m)sinfy(m) = 0, then there exists some k& € Z such that 6,(m) = kn.
Moreover, the solution ¢, has exactly one node at m — 1 or m, hence by
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0, (m—1) = kr—3 we have 0, (m) € (kn—75,kn+7%). Now, 0, (m) — 0,(m)
holds by

on(m) p(m)

tan by, (m) = —a(m)pn(m +1) - —a(m)p(m +1)

In the last step we now establish the following inequalities for the number of
nodes of the Wronskians and different counting methods. The result clearly
depends on the behaviour of the Wronskian at the boundary. Note, that this
also means that the difference cannot be large.

Lemma 8.26. Let ¢,,¢ be solutions of Jacobi difference equations such that
on(j) = @(j) asn — oo forallj=L—1,...,M+1, then for all n sufficiently
large

#w.m) (s ) = #(L,a1) (s @) = #1011 (05 D), (8.48)
#12,m](Pn, ®) = F# (1,11 (Pn, B) = F#(L,m1 (05 D), (8.49)
#1000 (Pns @) < F#10,00) (0, D). (8.50)

If Wi(p.¢) # 0 and W (g, ¢) = 0, then

#iwm) (s @) = #iL (e, 0),  #Fwawn (e d) < #aan(p,0).  (8.51)
If Wir(p,¢) =0 and Wi (g, ¢) # 0, then

#10,0m)(©ns 0) < #io,m) (05 9), #on(Ond) = #a (e, d).  (8.52)
If Wi(p,¢) # 0 and Wi (p, ¢) # 0 then we even have

#[L,M] (on, @) = #[L,M](% ®), #(L,M](‘Pna ¢) = #(L,M](% b), (8.53)
#1.0) (Pn, ®) = #1100 (0, D), #an(Pn, @) = F#wan (0, ¢).  (8.54)

The same holds for W (¢, ¢).

Proof. Let n be sufficiently large and let 6,,0,, be the Priifer angles from
Lemma 8.25. If Wi (¢, ¢) # 0, then by (04(L) — 6,(L))/m ¢ Z we have

en (L))/m] = [(05(L) = 0,(L)) /],

—0
= 0p, (L)) /7] = [(0(L) = 0,(L))/m].

The same holds at M. If Wy, (¢, ¢) = 0, then
[(0p(M) = 0y, (M) /7] Z [(05(M) — 0,(M)) /7],
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[0 (M) — 0, (M) /7] < [(06(M) — 6,(M))/7].

0, then

If WL(@; ¢)

—[(06(L) =0, (L))/m] < =[(06(L) = 0,(L)) /7] = =[(64(L) = 0,(L))/7],

—[(0s(L) =0, (L))/7] = =[(06(L) = 0,(L))/7],
—[(06(L) = 0p,.(L))/7] = =[(04(L) = 0,(L)) /7] — 1.

Now use

[0 (M) = 0,(M))/m] = [(65(L) = 05(L))/7],

#[L,M] (¢, 0)

#(L7M)(§0a ®)
#,m (9, P)
#[L,M)(‘p7 ¢)

[(0 (M) — 0,(M)) /7] — [(05(L) — 0,(L))/7],
[(6(M) = 0,(M))/m] = [(05(L) = 0,(L))/7| =1,

[(0 (M) = 0,(M)) /7] = [(05(L) = O,(L))/m] + 1.
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Chapter 9

Below the essential spectra

In this chapter we establish the oscillation theorems for Wronskians below the
essential spectrum of the corresponding operators, as already mentioned in the
introduction. Therefore, as usual let u_ denote a solution fulfilling the left
boundary condition of the corresponding operator. Hence, in the first part of
this section, where semi-infinite operators H are considered, u_ is a solution
so that u_(0) = 0 holds. And as soon as we look at H we assume u_ € ¢*(—N).

Lemma 9.1. Let v = uy(A) be a Weyl solution of (T — XN)u = 0. Then, there
exists an infinite subset ¢ of #, such that the family

{H} }ne # is uniformly bounded.

The same holds for {H,, , }me g where w = a_(A).

Proof. Since v has only simple zeros ¢, ={n € N,n>2|v(n—1) # 0} is an
infinite set. If v has infinitely many zeros, then let

I ={neN,n>2|v(n)=0}

Thus, by % = 0 the family {H},c # is uniformly bounded by 2||al| +
[Ibllcc- If v has only finitely many zeros, then fix some N so that v(n) # 0 for
alln > N. By Y02 y|v(n)|* < co and the ratio test liminf, o v(n) ’ <1

v(n—1)
holds. Now, let ¢ be an infinite subset of _Z, such that

lim inf M = lim M < 1.
n—oo |v(n —1) ney v(n—1)
Hence, lim s % < |la]|oo holds. Use reflection to obtain the second

claim. O
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9.1 The semi-infinite case

For all z4 < inf o (Hﬂ) by Theorem 7.10 we have

TNO4 TNo
To—2+ ~ Ti—z+ and To—2y ~ T — 2,

hence we already know that the Wronskians we consider in this section have at
most finitely many nodes. Now, we state the precise connection between them

and the spectra of the operators.

Theorem 9.2. Let z < inf ooss(HY). If by | by near oo, then

E( o2y (H}) = Eoo2)(HY) = #(0,00) (t0,+(2), u1,5(2)) (9.1)

holds, which is (1.18). If by 1T by near oo, then

E(—oo,z] (H—}-) - E(—oo,z) (H-(',)-) = #[0700) (uo,i(z)vul,$(z))' (92)

Proof. For the first claim let v = ug 4 (2) and by Lemma 9.1 there is some A < z
less than the lower bound of F = {HY,H}} U {HY* H}"},c y. Then, by
z 4 (b1 — bg)(J) € [A, 2] near co, Lemma 8.8, and Corollary 8.11 we have

E(—oo)(HL) = E—oo 2 (HY) = By 2y (HL) — Ex 2 (HY)
= lim (B (Hy") = Bz (Hy®)) = M (Booo 2 (Hy") = B(-oo,z (H9)).

n— oo

Now use Lemma 8.19. For the second claim use v = uq 4(2), Corollary 8.9,
2+ (by — bp)(m) | z near oo, and Lemma 8.10.

For the third claim let v = wug 4+(2) and again by Lemma 9.1 there is some
A < z less than the lower bound of F = {HY, H{} U{H}* H\"}pe 4. By
z+ (b1 —bg)(m) | z near oo, Lemma 8.10, Corollary 8.9, Theorem 1.5, To—z ~
71 — z, and Lemma 8.17 we obtain

Bz (Hy) = By (HY) = 1 (B (HyY) = Bz (H9))

= lm (#0,n) (Y0,n,n(2); ¥1.1,0(2))) = #(0,00) (0,4 (2), u1,—(2))-

n— oo

Now, let v = uy 4+(2) and consider

E()\,z] (H}L’Z) - E()\,z) (Hg’v) = #[O,n) (1/}0,71,0(2)7 wl,n,n(z))

from Theorem 1.5. Then, we have lim,_ E()\yz](H}L’Z) = E(A)Z](H}r) and
limy, o0 Ex o) (HYY) = E(x»)(HY) by Corollary 8.11 and Lemma 8.8, hence
the last claim follows from Lemma 8.17. ]

And moreover we find the following
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Corollary 9.3. Let z < inf aess(HLJr).
If bg | b1 near co, then

E(oon)(Hy) = E(—co 2 (HY) = #0,00) (00,4 (2), u1,- (2)), (9.3)

E( o) (HY) = B(— o025 (HY) = #{0,00) (10, (2), u1 4 (2)). (9.4)
If by 1 b1 near oo, then

E(oos)(HY) = Eoo ) (HY) = #0,00) (10, (2), u1,1.(2)), (9.5)

E(—oo,z} (H%l») - E(—oo,z] (Hj)») = #(O,w)(uoHr(z)vul,*(Z))' (96)
Proof. Use Theorem 9.2 and

1 ifze€o(H?

10100y (t0,4 (2), 11, (2)) = #(0 00} (tt0,4 (2), w1, (2)) + ()
0 otherwise

= E(foo,z)(H—l',-) - E(foo,z) (H-(i)-)’

1 ifzeo(HY)

0 otherwise

#(0,00)(”0,+(Z)7u1,*(z)) = #0,00) (uo,+(2),u1,—(2)) — {
= E(—oo,z] (Hi) - E(—oo,z] (H—(i)-)
to obtain the first and the last claim, the rest follows analogously. O

At last, we find a theorem for a Wronskian of solutions corresponding to two
different spectral parameters.

Theorem 9.4. Let z_ < z, < inf UeSS(HS)r). If by | by or by 1 by near oo, then

E(ooz)(Hy) = B_oo o (HY) = #(0,00] (0,2 (2-), u1,5(24)), 9.7

E(foo,z+)(H-1y) - E(foo,zf)(H-(i)-) = #[0,00] (u0,+(z—)au1,—(z+))7 9.8

E(ooz)(HL) = B(—so,z |(HY) = #10,00] (0, (2-), w1 1-(21)), 9.9
and

E(—ooz 1(H}) = B(—ooz) (HY) = #0,00) (0,2 (21), u1,5(22)), (9.10)

E(—oo,zf)(H—li-) - E(—oo,z+)(H—?-) = #(0,00] (U()’_(Z_‘_),UL_;'_(Z_)), (911)

E(foo,zf](H—l‘,—) - E(*OO,Z+](H-(|)-) = #(0,0o] (’LLO7+(Z+),U1,_(Z_)), (912)

where #(0,00) can be replaced by #o,o0) and #(9 0] can be replaced by # (0,00)
and the Wronskians don’t vanish near +0co by Lemma 7.6.

TNno.

Proof. We have 79 — 2+ ~' 7 — 2z by Theorem 7.10. Let v = ug 1 (2_),
v =1y 4(24), v =1ug4(24), or v =wuy 4+ (2_), then in either case by Lemma 9.1

there exists some infinite index set _# C _#, and some A < z_ less than the
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lower bound of 7 = {HY, H}} U{H}", H}"}ne 4. First, set v = ug 4 (2_) and

consider

Ex ) (HY") = By .y (H O’Z‘) = #10.n) (V0,00 (2-)s Y1,m,0(24))s
E()\,ZJr)(HyllW) E()\ z_ ]( ) #(0 nJ (¢ (Z—)7 '(/)l,n70(z+)>

from Theorem 1.5. By Lemma 8.8, Corollary 8.9, and Corollary 8.11 we have
limy, 00 E()\,z+)(H711’v) = E()\,z+)(HJ1r)v limy, 00 E(A,z_)(HS’Z7) = E(A,z_)(HJOr)
and lim,, o0 E()\yz_](Hg’z’) = E(\. 1(HY?). Now, use Lemma 8.17 for the first
and the third claim.

Next, set v = u; 4 (z4) and from Theorem 1.5 consider

B (HY* ) = B ((HYY) = #10.0) (@0,n,0(22), Y100 (24)),
E()\,er)(H ) E()\z ]( ) #(On (QZJOnO( )awl,n,n(z+))

Then, by Corollary 8.11 and Corollary 8.9 we have lim,,_, o E(A’Z”(H,}b’z*) =
By (HY) and limy, oo Egy ) (Ha™) = By .y (HL). If by | by, then 2y +
bo(m) — by(m) | z+, thus we have lim, o E(x ., |(HY") = Ex.,)(H}) and
limy, 00 B ,Z+]( v) = B Z+](H+) by Lemma 8.10, hence by E ..} —
Ec._ ., = E(._) we have lim,, ;o E()\’Z_}(Hg’“) = E(A’Z_](Hﬂ). If by T by,
then zy + bo(m) — b1(m) 1 zy, thus by Lemma 8.8 limy, o By ., (H") =
Ex.y(HY) and lim, oo B, . (HY") = E(._ .. (HY}) holds and hence by
Einz) — B2y = Eoz_) we have lim, o E(A,zf}(Hg’”) = E(A,Zf](Hf_).
Now, use Lemma 8.17 to obtain the second and the fourth claim.

Next, set v = ug 4 (z+) and consider

Ep. y(HY") = By (Ho™ ) = #0.0) (©0,n,0 (24), 1,0 (22)),
En ey (HYY) = By (H) ) = #0,0) (Yo (24), ¥1,m,0(2-))

from Theorem 1.5. We have lim,,_, E(,\J”(HS’Z*) = E(\.)(HY) and also
limy, 00 B 2, ( ) = E(\.,)(HY) by Corollary 8.9 and Corollary 8.11. If
by | b1, then z; + by(m) — by(m) T z4 near oo, thus by Lemma 8.8 we have
limy, o0 Ex o) (HyY) = B oy (HL), im0 B2y (HpY) = Bo_ . (HY).
Thus, by Ex ..y — E._ E(x,-_) and by Lemma 8.16 we have

Z4) T

1, _ 1
Jdim By )(H,") = lim B . y(H, oY) = E . (HY).
If bg 1 b1, then zy + by(m) — bp(m) | z4 near oo, thus by Lemma 8.10
we have limy, o0 By, Z+](H1 ) = E()MZH(H}F) and lim,_, E(z,,z+]<H71L’U) =

E(z 7ZJF]( ) Thu& by E()\ zy] T E( E()\,z,] and Lemma 8.16 we have

zo,24] T

lim E(Az )(H ") = lim E(/\z ]( ):E()\,zf](HJlr)'

n—oo n—oo
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Hence, Lemma 8.17 proves the fifth and the eighth claim.

Set v = uy,4(2—) and consider

E(n . ((Hy? ™) = Ep oy (HY) = #10,0) (V00,0 (24), Y100 (2-)),
Epn. y(HY* ) = Epe (HYY) = #0,0 (V0,0,0(24); 1,0, (2-))

from Theorem 1.5. We have lim,,_,, E(,\727)(H,1L’Z‘) = E(\. y(H}) and also
limy, 00 E(A,Z_](H},’z’) = E(\. (H}) by Corollary 8.9 and Corollary 8.11. By
Lemma 8.8 and Lemma 8.16 we have

lim By, (Hy") = m B (HyY) = B (HY).

n—oo

Now, use Lemma 8.17 again. O

9.2 The infinite case

As already discussed earlier we have
™o T™Nno
To— 2+ ~ T —%2+ and To—24 ~ TL— 2f

if 2+ < infoess(Hp), see Theorem 7.11. Thus, below the essential spectrum of
infinite Jacobi operators we obtain the following

Theorem 9.5. Let z < inf 0.s5(Hp). If by | b1 near +oo and near —oo, then
B(coz)(H1) = E(—oo2)(Ho) = #(—o0,00) (w0, (2), u1,(2)) (9.13)
which is (1.14). If by | b1 near +oo and by 1 by near —oco, then

E(—OO,Z)(H1> - E(—OO,Z)(HO) = #[—O0,00] (u0’+(z)7u1,,(z)), (9'14)
E(—oo,z] (Hl) - E(—oo,z] (HO) = #[—oo,oo] (UO,—(Z)7U1,+(Z))' (9'15)

If by T by near +o00 and by | by near —oo, then

+
—
N
~—
~—
e
[u—y
D
~

E(—oo,z)(Hl) - E(—oo,z)(HO) = :/%/:(—oo,oo)(uo,—(’2)7ul7
E_oo2)(H1) = B(_oo 2] (Ho) = #(—o0,00) (0,4 (2), u1,—(2)). (9.17)

If bg 1 b1 near 400 and near —oo, then

E(foo,z] (Hl) — E(foo,z) (Ho) = #[700700) (uo)i(z),ul;(z)). (918)

Proof. Let w = ug,—(z) or w = uy,_(z), then by Lemma 9.1 there is some
infinite set ¢ C _#, and some A < z less than the lower bound of F =
{Hy, H1 } U {H,?;ji, Hl’fi}nej. We assume n € _# and let w = ug,—(2) at first.

m
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If b J b1 near —oo, then by Lemma 8.8 lim,, E(,\J)(H,l,;fi) = B\ (Hy)
holds. If by 1 by near —oo, then limy,—,—co Eqx o) (Hy") = E(x.)(H1) holds
by Lemma 8.10. If by | b1 near co, then by Corollary 8.11, Theorem 9.2, and

Lemma 8.20 we have
E(—oo,z)(Hl) - E(—oo,z](HO) = m1_1>r£1 (E( oo z)(H ) E( 00,2] (HSIZJF))

= lim #(m oo](/wOmm( )7w1,m,+(’z)) = #(—oo,oo](uo,*(z)vul,+(z>)

m——0o0

if by | b1 near —oo and moreover by Corollary 9.3 we have

E(foo,z](Hl) — B(_o,z)(Ho) = lim (E( OOZ](Hrlanr) E(*oo,Z](ng’,i))

m——0o0

= lim # [m, 0] (¢0 m m( ); d}l,m,Jr(Z)) = #[700,00} (Uo,f(Z)y u1,+(’z))

m—r—0o0

if by 1 b1 near —oo.
If by T b1 near oo, then by Corollary 8.9, Corollary 9.3, and Lemma 8.20 we
have

E(—oo,z) (Hl) - E(—oo,z) (HO) = lim (E(—oo,z) (Hin’,,z-&-) - E(—oo,z) (H?n’,,z-&-))

m—r—0o0

= lim #(m oo)(QZJOmm( )a¢1,m,+(z)) :#(—oo,oo)(UO,—(Z)aul,-F(z))

m——0oQ0

if by | b1 near —oo and moreover by Corollary 9.3 we have

E(coos)(H1) = B(—oo2)(Ho) = Wm_ (E(— oo (HY) = E—oo oy (H2L))

m—— o0

= mLHPOO #[m,oo) (wO,m,m(z)a ¢1,m,+(2)) = #[—oo,oo) (UO,f(Z)v u1,+(z))

if by 1 b1 near —oo. This proves the first part.

For the rest now set w = uy _(2z). Then, by Corollary 8.9 and Corollary 8.11
we have limy, o By ) (HY) = Eg oy (Hy) and limg,—— oo Eqy o (HY) =
Ex,(H1). By Theorem 7.11 we have 79— 2 " 71 — z and hence by Lemma 8.20

M # (i o0] (V0,m,+(2)s Y1,mm (2)) = #0000 (V0,4 (2), 1, (2))

m—r—0oQ0

holds, where #|o | can be replaced by #o,.], #[o,.), OF #(0,.)- From Theorem 9.2

we obtain

E( ooz)(H ) E( ooz)( ) #[moo ("/}Om+('z)v¢1,m,m(z))v
E( ooz)(H ) E( ooz]( ) #(moo (w0m+(2)7wl,m,m(z))

if bg | by near oo and

E(—oo,z] (er;f+) - E(—oo,z)(HSr;jﬂ-) = #[m,oo) (¢0,m,+(2)7¢1,m,m(z)),

96



E(—oo,z] (Hrlr{i&-) - E(—oo,z] (Hnoq)fl-)i-) = #(m,oo)(¢0,m,+(z)7¢1,m,m(z))

if by 1 by near oco. If by | by near —oo, then z + by(m) — by(m) | z near —oo,
thus by Lemma 8.10 lim, s oo E(x 2 (HST’:“UJF) = E(x.)(Ho) holds and if by 1 by
near —oo, then z 4 bg(m) — by(m) 1 z near —co, hence by Lemma 8.8 we have
i —o0 E(x2) (Hi) = E(x,) (Ho)- O

In the last step we now investigate the Wronskian of solutions at z_ and z; on
the line.

Theorem 9.6. Let z_ < zy < infoess(Hop). If bg | b1 or by T by near +oo and
bo 1 b1 or by T b1 near —oo, then

E(—oo,z+)(H1) - E(—oo,zf](HO) = #[—oo,oo] (Uo,i(z_),U171(Z+)), (919)
B oo )(H1) = B(—oo,z)(Ho) = #([—oc0,00) (W0, (24), u1 5 (2-)), (9.20)

where the Wronskians don’t vanish near £0o by Lemma 7.0, thus #[_ oo 0] can
be replaced by #(—oo,oo]: #[—oo,oo)r or #(—oo,oo)-

Proof. We have 19 — z4 '~ T4 — z+ by Theorem 7.11. If w = ug,_(24) or
w = uy,— (24 ), then by Lemma 9.1 there is some infinite set # C _¢#,, and some
A < z_ less than the lower bound of F = {Hy, H; } U {H&fﬂ_,H},{fﬁ_}me/.

For the first claim set w = uy _(z4): if by | by near —oo, then z4 + bo(m) —
bi(m) | z4, thus by Lemma 8.10 lim,, oo E()\VZJr](Hg;?'_"_) = E(x.,)(Ho) and
iy —o0 B oy (Hu") = E(,_.,)(Ho) holds. By E( .1~ E(._ o
and Lemma 8.16 we have

2] =

lim Epney(HRY) = lim Exzj(Hp') = Bz (Ho).

If by 1 by, then z; + bo(m) — by(m) T z4, hence by Lemma 8.8 we have
lim,,— — oo E(A,er)(Hg{fi) = B\ 2, )(Ho) as well as limy, o E(z,,z+)(H3{?U+) =
E(zf,z+)(H0) and by E(/\)z+) - E(z,,er) = E()\7z,] and Lemma 8.16 we again
have limy,—, —oo Ex sy (Hp"y) = iMoo By . ) (H") = By (Hp). Now,
Corollary 8.9 implies lim,,— o E(Aszr)(H;”zI) = E(x,.,)(H1) and from Theo-
rem 9.4 in any case (if by | by or by 1 by near +00) we obtain

1,z W o\
E(—oo,z+)(quL7I) - E(—oo,z,)(HSn,—s-) - #[m,oo] (d)o,m,-‘r(z—)'d}l,m,m(z-i-))

Now, use Lemma 8.20.
0,z

For the second claim set w = ug,— (2—), then we have lim,, , oo E(x . |(H,, ;) =
Ex,._1(Hp) by Corollary 8.11, and by Lemma 8.16 and Lemma 8.8 we have

lim Egey)(Hy) = T B (Hy') = Eey) (H)-

m——0oQ
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From Theorem 9.4 we obtain

E(*OO,ZH(H;{?{]%) - E(*OO,zf](HS;,Z;) = #[m,oo] (¢o,m,m(2—)7¢1,m,+(z+))

if by | by or by T by near oo, hence the claim follows from Lemma 8.20.
Now, set w = uy,_(z_), then by Corollary 8.11, Lemma 8.8, Theorem 9.4, and
Lemma 8.20 we have

. 1,z ;W
E()\,z,](Hl) - E()\7z+)(H0) = mgrzloo(E(—oo,zf](Hm,-&-) - E(—Oo,z+)(H?n,+))

= lim #[m,oo](wo,m&(z-l-)ywl,m,m(z—)):#[—oo,oo](uo,-&-(z-&-)vul,—(z—))

m—r—0oQ

if by J. b1 or by 1 by near +oo.

For the last claim set w = ug —(24). If by | by near —oo, then z4 + bi(m) —
bo(m) T z4+ near —oo, thus by Lemma 8.8 we have limy, , E(A,er)(HTl,;fﬂ_) =
Eoneyy(Hy), iy oo Ex . y(H2Y) = B, ..)(Hy). Hence, by B .,y —
E ..y = B, ) we have limy,y—oo Ex . ((H2") = Ev . j(H1). If by 1
by near —oo, then zy + by(m) — bg(m) | 24 near —oo, thus by Lemma 8.10
we have limy,—,— oo Box oy (Hp") = By (H1), im0 Bo o (HY) =
E(Zﬂer](Hl). Hence, limmﬁfoo E()\727](H${?1_),’_) = E()\,z,](Hl) holds by E()\,z+]_
E( E(y,._1- By Theorem 9.4 we have

Zo,24] T
w 0,z
E(—oo,z,](H:n,’-i-) - E(—oo,z+)(Hm,-?——) = #[mpo] (wO,m,m(z+); 1/11,m,+(2—))

if by | b1 or by T by near +oo. Hence, we have lim,, . E()\7Z+)(H2fj) =

E(x,..)(Hg) by Corollary 8.9, and Lemma 8.20 proves the claim. O

98



Chapter 10

Semi-infinite Jacobi

operators

In this chapter we consider gaps of the essential spectrum of semi-infinite Jacobi
operators to prove Theorem 1.2.

First of all we briefly recall the renormalized oscillation theorem from [46], where
one single Jacobi operator is considered. In contrast thereto, we investigate

Wronskians which consist of solutions of two different Jacobi operators.
Theorem 10.1 (Renormalized oscillation theorem). [/2, Theorem 4.17]
Let [z_,z4] Noess(Hy ) = 0, then

E(z, 24) (H+) = #(0,00] (U, (Z,), U— (ZJr))
If we look at only one operator, then we easily also obtain the following theorem

from our previous considerations.

Theorem 10.2. Let [2_, 2| Noess(Hy) =0, then

E(z,,z+)(H+) = #(O,oo] (u:I: (Z—)vu
E[z,q,z#)(H-‘r) = #[0,00] (U+(Z_),u
E(z,,z+](H+) = #[O,oo] (U_ (Z_),U+(Z

N
Y
+ 4+ 1
S~—
T =

where the Wronskians don’t vanish near oo, that is, #0,00] can be replaced by
#(0,00) and F#0,00] VY F#[0,00)-

Proof. By Lemma 7.6 the Wronskian cannot vanish near oco. First, let v =
uy(z_), where n € _#,, then by Theorem 1.5, Lemma 8.8, Lemma 8.8, and
Lemma 8.17

E[z,,z+)(H+) = nh—>120 E[zf,u)(Hﬁ)

99



= nlgTolo #[o,n] (¢n,n(2—)7 1/’n,0(2+)) = #[o,oo] (ug (22 ), u_(z4)),

E(Z_ ,Z+) (H+) = n]"l_{r;o E(z— 7Z+) (Hs)

= lim # 0. (Ynn(2-),¥n0(24)) = #(0,00) (U4 (2-), u—(24))
holds. Now, let v = u4(24), then we find analogously

E(z,,ZJr](HJr) = nlglc}o E(z,,er](Hg)
= nh—>Holo #[O,n] (wn,O(z—)? wn7n(z+)> = #[O,oo] (U_ (Z—)7 U+ (z-‘r))v
E(z,,z+)(H+) = nhHHéO E(z,,z+)(Hg)

= nh—>120 #(o,n] (wn,o(z-), wn,n(z+)) = #(o,oo] (U—(Z—% u+(z+)).

10.1 A first theorem on the half-line

Now we turn toward the investigation of to different Jacobi operators H. 3_ and

H 41_ From now on we assume

2,24 NOess(Hy) =0, 22— < 24, (10.1)

a=ag=ay, and byl by near oco. (10.2)

We remark, that the notation used in this section has been introduced in Sub-
section 8.2.1. Additionally we abbreviate

No(2) = #(0,00) (10,4 (2), u1,—(2)),  N1(2) = #(0,00) (10, (2), u1,4(2)). (10.3)

Both numbers are finite for all z & o (H_?_) by Theorem 7.10.

Lemma 10.3. Let by | by near oo, z € (Ao, M| N oess(HY) = 0, and let v =
uj+(2), 3 = 0,1. Then, for all X € [Ao, A1] there exists an Ny and o constant
Cj2(A) so that

E( oo ) (HY") = E—oo n(HY") = Cj2(N)

\Y
=

(M)
holds for alln > Ny, n € #,. Moreover,

E.n(HL) = Een(HY)  ifA>z
CQZ()\)—NQ(Z) :Cl,z(/\)—Nl(Z) = 0 Zf/\:Z
7E()\7Z)(H_}_) + E(A,z] (H_?_) Zf)\ <z

and N1(A) < Co 2 (A), No(A) < C1,.(A) holds if X # .

100



Proof. Let v = up,4(2) and n € _Z, be sufficiently large. If A = z, then the
first claim holds by Lemma 8.19. If A < z, then by Corollary 8.11, A € o(H}"?)
(Lemma 8.16), 2 + by — by 1 2z, and Lemma 8.8

Bz (Hp?) = Ex (HY) = My < o0,
Ep sy (Hy) = By o) (HyY) = Bz (HY) = My < 00

n

holds. Now,

My = My = B ) (Hy") = By (Hy%)
= B cosy(HY") = B oo ) (H)) ~(B( oo ) (Hy") = B(_oox(H})),

N(](Z) CO,Z()\)

hence C(),Z(A) - No(z) = _E(A,z)(H}Q + E(,\’Z](Hﬁjr)
If A > z, then by Lemma 8.16, Corollary 8.9, z + by — by 1 z, and Lemma 8.10

B (HR) = B (HD*) = B (HY) = Mo,
Ep. x(HY) = M,

e
X
=
=
s
S~—"
[

holds and thus,

My — My = E|, ) (Hy") — B¢, x(HY?)
= E(—oo ) (HyY) = B_oon(H)?) =(B(—o0,2) (Hy") = B(_oo,2)(HY?))

Co,=(N) No(z)

hence Co.(A) — No(2) = E, ) (HL) — Bz (HY). If X # 2, then let K such
that (b — b1)(j) = 0 for all j > K and all nodes of W (ug,4(A),u1,—(N)) and
W (ug,— (M), u1,+(N)) are to the left of K. Let j = 0,1, then by Lemma 8.21
there exist solutions ¢; ,,(A) of (75, — A)u = 0 such that

©in(An)=0 and @;,(A,m)—=u;(A,m) atm=-1,...,K+2.

Let 1 n,0(A) denote a solution of (7, — A)u = 0 vanishing at the point 0. The
solution u; _(A) also is a solution of (75, — A)u = 0 below n and hence by

Lemma 8.26 for all n sufficiently large we have

Co,2(A) = #(0,n) (0,1 (A); Y1.1,0(N)) = #(0,6+1) (00,1 (A); P1,n,0(N))
= #0,x+11(Po,n(A), u1,— (X)) = No(A),
CO,Z()\) = #(O,n] (’@[JO,n,O()‘% (pln()\)) P #(O,K+1] (’U,O’,()\), Qpl,n()\)) P Nl()\)

Now, let v = uy4(2) and n € _Z,. Then, if A = z, the claim holds by
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Lemma 8.19. Let A < z, then

Exz(H)Y) = Eqx 2 (HY) = Mo,
Ep oy (HY?) = E ) (Hy?) = Ey ) (HY) = My

holds for all n sufficiently large, where we used z 4+ by — b1 | z, Lemma 8.10,
Lemma 8.16, and Lemma 8.8. Now,

My — My = E[)\,z) (H,rll’z) — E(A,z](HS’U)
= E(—oo,2) (Hy*) = B(oo ) (Hy") =(B(—oo ) (Hyy®) = E(—oox](H)),

Nl(z) Cl,z()\)

hence Cy-(A) — N1(2) = —E ) (HL) + E(y ;) (HY). And if X > z, then

E(z,)\] (Hgv) = E(z,)\) (Hgav) = E(z,)\) (H_?_) = M()’
Ep. x(Hy?) = By (HL) = My

holds, where we used Lemma 8.16, z+by—b; | 2z, Lemma 8.8, and Corollary 8.11.
Thus,

My — Mo = Ep. 5 (HY?) — E¢.x (HY)
= E(—oo,A)(Hrlfz) - E(—OO,A} (HS’U) _(E(—OO,Z)(H7117Z) - E(—DO,Z] (Hg’v))

Cl,z()\) Nl(z)

implies Cy.(\) = Ni(z) + Ep, 5 (H}) — B (HY). With exactly the same
argument as in the previous case for all A # z we obtain

C1,:(A) = #0.n)(V0,n,0(A), 01,0 (N)) = #(0,n) (0,0 (A), Y1,1,0(N)) -

ZN:i(X) 2No()

O

With respect to the following remark confer also Remark 8.22; Lemma 10.16,
and Lemma 10.17.

Remark 10.4. It is possible that we have Cy_,(A) > No(X). Consider therefore
the following example: let X\ € a4(HY), then

W (uo,+(N), uo,— (X)) vanishes, thus No(A) = —1.
Let z = X+e, e >0, such that [\, z] No(HY) = {\}. Then,

W (ug +(2),uo,—(2)) is constant and nonzero, hence Cop (X)) = No(z) = 0.
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The same holds for z = X\ — &, where € > 0 so that [z, \] N o(H}) = {A}.
Hence, by approximating twice we finally obtained the following two inequalities:
Lemma 10.5. Let by | by near oo, [z_, z4]Noess(HY) =0, and i, j = 0,1, then

B o(HL) = B - (HY)
B o(HY) = B2 (HY)

Ni(

) — Nj(z-),
N;( —

< 4
= 24

Proof. By Lemma 10.3 we have

Co,z (22) = No(24) — Eo_ .y (HL) + B ».1(HY) = N;(2-),

Coz (24) = No(z-) + B o) (H}) — E(o_ 2 (HY) > Nj(24),

Crop(22) = Ni(zy) — Bo_ oy (HY) + B2 (HY) > Nj(z-),

01727 (Z-‘r) = Nl(z—) + E[zf,ZJr)(H«lk) - E(zf,z+)(Hg) 2 Nj<z+)7
where j =0, 1. O
Now we can already prove a first part of Theorem 1.2.
Lemma 10.6. Let by | by near oo and z ¢ O’ess(H_?_), then

NO(Z) = Nl(z) (104)

Proof. Let z_ < z < z4 such that
zy €p(HY)Np(HY) and  [z-, 24 Noess(HY) =0
holds. If z ¢ o(HY), then by Lemma 10.5 we have
Ep._ . (HY) — E._ .(HY) = No(2) — No(2=) = N1(2) — No(2-),
hence No(z) = N1(z). If z € o(H1), then by Lemma 10.5 we have
Blo2)(HY) = Bozy ) (HY) = No(24) = No(2) = No(z4) — Ni(2),

thus No(z) = Ni(z). If z € o(HY) No(HL), then up_(z) = uo4(2) and
u1,—(2) = u1,4(2) holds, hence Ny(z) = N1(z). O

This shows, that the following is well-defined.

Definition 10.7. Let by | b1 near oo and z & 0’635<H9r), then

N(2) = #(0,00) (10,4 (2), u1,-(2)) = #(0,00) (0, (2), u1,+(2)) (10.5)

holds.
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From Lemma 10.5 and Lemma 10.6 we conclude the following corollary, which
constitutes a first version of Theorem 1.2, but with the additional assumption
(1.20).

Corollary 10.8. Let by | by near co and let [z—,z4] N O'SSS(HSJF) = 0. If
z_ ¢ o(HL) and zy & o(HY), then

E. . H}) = Eq_ . (H)) =N(24) = N(2_). (10.6)

With respect to the continuous case the following should be mentioned:

Remark 10.9. In the Sturm—Liouville case (Theorem 3.13 in [30]) and in the

Dirac case (Theorem 1.1 in [37]) the assumption
)\0 g O'(Hl) and )\1 ¢ O'(H()) (107)

is missing for the equation, which holds in gaps of the essential spectrum above

its infimum, i.e., in (3.10) and (1.12), respectively.

10.2 Main theorem for semi-infinite operators

To finally obtain Theorem 1.2 it remains to eliminate the assumption
z_¢o(H)) and 2z ¢o(HY) (10.8)

from Corollary 10.8, what is done in the present section.

As already mentioned in the introduction, see (1.20), we use a perturbation
argument. With respect to the following lemma we remark, that a standard
result of regular perturbation theory (confer the Kato—Rellich Theorem [31,
Theorem XII.8]) also tells us, that the discrete eigenvalues of H¢ are analytic
functions of € near € = 0. Nonetheless, we prefer to give a self-contained proof

for the following lemma, which follows from Lemma 10.5.

Lemma 10.10. Let z_ < z < zy, z € 04(Hy), [2—, 24| No(Hy) = {z}, and

b(l)+¢e a(1)

Hy=1| a1) b2 |- (10.9)

If a(0)us(24,0) and a(0)uy(z+,0) — euy(z4,1) = a(0)ue +(2+,0) are of the

same sign (and non-zero), then

Epe 2 )(HY) = E(o_ 2y (HY) = 1. (10.10)

z—,z4]
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Moreover, E, .. y(HS) =1 ife >0 and E,_,)(H) =1 ife <0.

Proof. Let € # 0 and let all solutions be normalized such that either u(1) =1
or u(l) = 0 holds. By z € o4(Hy) we have uy(z) = u_(z) and uy(z,0) =
0. The difference equations 7 and 7. coincide above b(1), hence the solution
Ue,+(2,7) of (7- — z)u = 0 which is square summable near oo coincides with
uy(z,5) at 5 = 1. Then, Wj(uc 4(2),u—_(2)) = Wj(us(z),u—(z)) = 0 for
all j > 1 and —a(0)ue +(2,0) = (bo(1) + € — 2)uc 4(2,1) + a(uc 4 (2,2) =
euy(z,1) —a(0)uy(z,0) = € # 0, thus, z € o(HT), and Wy(ue +(2),u—(2)) =
a(0)ue 4+(z,0) = —e. Hence,

#(O,oc] (u6,+(z)7 U— (Z))

-1= #(O,oo} (U+(Z), u,(Z)) ife <0

= #Holue,+(2),u—(2)) =
olte +(2), u-(2)) 0 = #(0,00) (us(2),u—(2)) + 1 if e > 0.

Further, the solutions wu. 4 (24, ) coincide with uy (24, ) at j > 1, and hence
Wyt s (), 1 (22)) = Wiy (20), u(24)) = Wolus (20),u_(24) holds for
all § > 1 and moreover we have Wi(ue 4(z4),u_(21)) = a(0)us(z4,0) #
0, and Wo(ue +(2+),u—(2+)) = a(0)uy(2+,0) — euy (24, 1)u_(24,1). Hence,
#0(ue, 1 (22),u_(2+)) = 0 holds, that is, we have # g o) (e 4 (2+),u—(2+)) =0
if a(0)uy(z+,0) and a(0)uy(z4,0) —eut(2z4,1) = a(0)ue + (24, 0) both are pos-
itive or both are negative. If so, then by Lemma 10.5 and z ¢ o(H7) we

have

1- E(z,,ZJr](H—El-) = E[z,,z+)(H+) - E(z,,z+](H—€|-)
= #(0,00) (Ue 4 (24 ), u—(24)) — F#(0,00] (e, (2-),u—(2-)) =0

hence, E._ . y(H%) = E(._..j(H$) = 1. Moreover, by Lemma 10.5
- E(z,,z] (H—si-) = E[z,,z)(H-i-) - E(z,,z] (Hj-)

= #(0.00) (e 4 (2), u—(2)) = #(0,00] (e 4 (2-), u—(2-))

0=-1 if 0
0100y (1 () U (2)) — H(og (g (2 )y u () + hes
1=0 ife>0

holds, hence E(; ., (H}) =1ife > 0and E,_)(H:)=1ife <0. O

Corollary 10.11. The discrete spectrum of HS strictly increases (decreases)
as € increases (decreases). A point of 04(HS ) reaches the next point of o(Hy )

(if any) at € = co.

In the following lemma we consider the case, where one endpoint of the spectral

interval is an eigenvalue of both operators.
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Lemma 10.12. Let by | by near 0o, z_ < 2 < z4, z € ad(Hi), and [z—, z+] N
o(H}) = {2}, j = 0,1, then

E. . (HY) —E._(H})=N(z)— N(2_), (10.11)
Eoy(HY) = Bz )(HY) = N(z4) = N(2). (10.12)

Proof. Let all solutions be normalized such that either u(1l) = 1 or u(1) =0

holds and let 7y be the Jacobi difference equation corresponding to

where € > 0 is sufficiently small, then E[Zf,ﬂ](f{?_) = E(Z7Z+)(I~{3_) = 1 holds
by Lemma 10.10. The solutions @4 and u4 coincide at all points j > 1. Now,
by Wi(uo,+(2), u1,—(2)) = (bo = b1)(D)uo 4 (2, Dur,—(2,1) = bo(1) — ba (1),

Wo (o, +(2), u1,—(2))
— Wi+ (2), w1, (2)) — ((bo — b1)(1) + )i 1 (2, Vs, (2,1) = —¢ <0,

and Wo(uo 4+ (%), u1,—(2)) = 0 we have

#o(uo,+(2),u1,—(2)) = #o(tio,+(2),u1,—(2)) = {0 i (bo = 8)(1) < O

1 if (b — b1)(1) > 0,

= #(li0,4(2), w1, (2)) = 1 = #(0,00) ({04 (2), 11, (2)) — 1.

We have #;(to,+(z=),u1,—(2=)) = #;(uo,+(2-),u1,—(2-)) for all j > 1 and
moreover Wo(uo 4+(2z-),u1,—(2=)) # 0 and Wy (to 4+ (2— ), u1,—(2-)) # 0 holds by
z_ € p(HY) Op(f[?r). Further,

Wi(uo4(2-), u1,—(2-)) = Wo(uo4(2-), u1,—(2-))

0 if ug 4(2—,1) =0
= (bo — b1)(Duo,+(2—, Duy,_(2-,1) = ’
(bo )(Duo,+( ) ( ) {(bo —b1)(1) fup4(z—,1)=1

106



and

Wi(to,+(2-),u1,-(2-)) = Wo(to4(2-), ur,—(2-))
= ((bo — bl)(l) + E)fbo}+(277 1)’11,17,(2,7 1)

{O if up+(2—-,1) =0

(bo*bl)(l)‘i’é“ if U07+(Z_,1) =1.

If ug 4+ (2—,1) = 0, then #o(uo +(2—),u1,—(2-)) = #o(to +(2-),u1,—(2-)) = 0.
If up4+(2-,1) =1, then

Wo(to,+(2-), u1,—(2-)) = Wiuo 4 (2-), u1,—(2-)) — bo(1) + b1 (1) — €
= Wo(uo,+(2=),u1,—(z_)) —¢.
20

Now, let € > 0 such that Wy (tio +(2— ), u1,—(2-)) and Wy(ug+(z-),u1,—(2-))
are of the same sign. If (bg — b1)(1) = 0, then by Wi (o +(z-),u1,—(2-)) =

Wi (uo 4+ (2= ), u1,—(22)) = Wo(uo,+(2-),u1,—(2-)) we have
Holuto, 1 (=), 1, (+-)) = #olfio+ (s ), (2.)) = 0
If (bo —b1)(1) # 0, then #o(uo,+(2=),u1,—(22)) = F#o(to,+(2=),u1,—(2-)) if we

choose € > 0 sufficiently small such that moreover (by—b1)(1) and (bg—b1)(1)+¢&
are of the same sign. Finally, in either case we have

N(z) = 3 #5u0.4 (2-) wr — (-))

I

<
I
o

M

# (U4 (2-),u1,—(2-)) = #(0,00) (U0, + (2 ), u1,— (2-))

<.
I
o

and thus by Lemma 10.5 we have

E[z_,z)(Hi) - E(z_,z] (H:)L) = E[z_,z)(H}k) - E(z_,z](I:LOk) -1

= #(0,00] (U0,+ (2), u1,—(2)) = #(0,00] (T0,+ (2 ), u1,—(2-)) — 1
= N(z) — N(z-).

This proves the first claim. By Lemma 10.5

N(Z-l-) - N(Z—) = E[z,,z+)(Hi) - E(z,,z+] (H-?-)
=B, o) (Hy) — B¢ (HY) + B . (HL) = E.,. (HY)
=N(2) = N(2-) + Ep. ., (H}) — E.. ., (HY)
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holds, which proves the second claim. O
Now we complete the proof of Theorem 1.2:

Theorem 10.13 (Relative oscillation theorem for semi-infinite Jacobi opera-
tors). Let [z_,24] N oess(HY) =0 and by | by near oo, then

E[z ,z+)(H ) E(z z+]( ) N(Z-i-) - N(Z—) (1014)

Proof of Theorem 10.13 and (1.17). Let e1 > 0 be sufficiently small such that
[24 —eq, 24 +e]N(o(HY)Uo(HY)) C {24} and let a = 24 —ey, B =z +ey.
If zy € c(HY)No(HY) or zy € o(HY), then by Lemma 10.12 and Lemma 10.5
we have Ej, . \(H}) — E(,,..)(H}) = N(24) — N(). If 2 € o(H7), then by
Lemma 10.5 EZ+ g (HY) — E(., g(HY) = N(8) — N(z+) holds and hence by
Eiop)(HY) — E(,5(HY) = N(B) — N(«) we have

E[a z+)(H ) E(a z+]( )
= Elap)(H}) = Ea,p)(HY) = (Bp, 5)(HL) = Bz, p)(HY))
= No(B) = N(a) = (No(B) = N(24)) = N(24) — N(a).

Let e > 0 so that [z- —e_,z_ +e_]N(c(HY) Uo(HL)) C {z_} and let
y=z_—c_andd=z_+e¢e_.

If 2_ e c(HY)N O'(Hl) or z_ ¢ o(HL), then by Lemma 10.12 and Lemma 10.5
we have B, 5 (HY) — E(z s (HY) = N(0) = N(2-). If z_ € o(HY), then by
Lemma 10.5 By, . y(H}) — E(,,. j(H)) = N(2_) — N(v) holds and hence by
s (HY) — B, 5(HY) = N(8) — N(7) we have

E._s(H}) — E._g)(HY)
= N(6) = N(7) = (N(2-) = N(7)) = N(d) — N(z-).

By Lemma 10.5 we have Ejs o) (H}) — E¢5,0(HY) = N(a) — N(6) and thus,

E._ . (H})—E;_ . (HY)
= El._s5)(Hy) = E:_5)(HY) + Eps.a)(Hy) = E(5.0)(HY)
+ Bla,zp) (H}) = E(azp) (HY)
=N(0) —N(z2-)+ N(a) = N(0) + N(24) — N(a) = N(24) — N(z-).

O

Corollary 10.14. Let I be a connected component of R\ 0ess(HY). Then the
function
N:ICR\oess(HY) > Z (10.15)
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from (10.5) is a step function which jumps (left-continuous) by 1 at each eigen-
value of Hi and jumps (right-continuous) by —1 at each eigenvalue of H?r. The
function N is continuous at all z in both resolvent sets and jumps locally by —1
at all z in both spectra, that is, we then have N(z —¢) = N(z) + 1= N(z +¢)
for all € sufficiently small.

Finally, we want to have a closer look at the approximation again, thereto we

add the following claim.

Lemma 10.15. Let \; ¢ Uess(Hi) and let u; (X;),7 = 0,1, be Weyl solutions
of (1j — A\j)u; = 0. Then,

/u0,+(>\0) N /u1,+(>\1)

is an infinite set. The same holds for solutions which are square summable near

—0Q.

Proof. Abbreviate u; = u;+(A;),7 = 0,1, and suppose J is a finite set. Then,
since the nodes of both solutions are simple, without loss, there exists an N € N
such that ug(k) = 0 for all K > N,k even, and uy(k) = 0 for all & > N,k odd.
If so, by

Wn+1(u0,u1) — Wn(uo,ul) = (bo — bl)(n + 1)UO(TL + 1)u1(n + 1) =0

the Wronskian is constant near co. Moreover, the Wronskian is not vanishing
near oo by W, (ug,u1) = a(n)(uo(n)ui(n + 1) — uy(n)ug(n + 1)) # 0 and thus
W (ug,u1) ¢ ¢3(N) which contradicts Lemma 3.6. O

By Lemma 10.3 and Theorem 10.13 we obtain the following lemma, which shows
explicitly, for which boundary conditions the Wronskians associated with the
finite matrices actually have one node more than the semi-infinite one — although

we have convergence on an (arbitrary) finite set.

Lemma 10.16. Let by | by near oo, A,z € [2—,z4] N UESS(HLJF) = 0, and
vo = up +(2),v1 = u1,4+(2). Then, for all X € [z_, z4] there exists an Ny such
that

E(— ooy (Hy") = E(oo ) (Hy™) = Co,2(A)
= E(—oop)(HY") = E(—oo ) (HY") = C1 2 (N)

NA)+1 ifz<Xe€o(HY) orz>Xeo(HY)
N(X) otherwise

foralln > Ny, n€ _Zy, N _Zu,, which is an infinite set by Lemma 10.15.
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Proof. By Lemma 10.3 we have

Epn(HY) — Eca(HY)  ifA> 2
Co2(A) = C12(A) = N(2) + 0 if A=z
—E o (HL) + Ep o (HY) i A <z

Let j =0,1. If A > z, then by Theorem 10.13 we have

1 ifxeo(HY)
= Ep. 0 (H}) — B (HY) - o
0 otherwise

1 ifxeo(HY)
=Cj:(A) = N(2) - o
0 otherwise,

thus, Cj.(A) = N(A\) + 1 if A € o(HY). If X < z, then by Theorem 10.13 we
have

N(z) = N(X\) = Epy oy (Hy) — By ) (HY)

_N(5) - (V) + 1 ifXeo(Hy)

)

0 otherwise,

thus, C;.(A) = N(A\) + 1if A € o(H7). O

Hence, now we see explicitly, that an eigenvalue at the ’foreign’ closed endpoint
of the spectral interval is approximated from outside the interval. Thereto,
confer also Remark 8.22, Remark 10.4, and Lemma 10.16.

Lemma 10.17. Let by | by near oo and [2_, 24| N 0ess(HY) = 0. Then, there
exists an N such that

. ; 1 ifz_ €o(HL)
E[Z—,Z+)(H71L7 ) - E(z_,2+](H2’ ) = N(Z+) - N(Z,) - . "
0 otherwise
if v=uo4+(21) orv=u1 4+(24+) and
. . 1 ifzp € o(HY)
E. . HY) = E_. (HY")=N(zs) — N(z-) + ST
0 otherwise

if v =04 (2-) orv=ui(2_) holds for alln € #,, wheren > N.
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Proof. Let j =0,1. If v; = u; 4 (24 ), then by Lemma 10.16 we have

E(7m7z+)(H1}L’Uj) - E(foovz+](H’27vj) = N(Z_;’_)’

1 ifz_ e o(HL)

n

E(—oc,zf)(Hl’Uj) - E(—oo,zf](Hg’vj) = N(Z_) + .
0 otherwise

holds for all n € ¢, sufficiently large. If v; = u; 1 (2_), then by Lemma 10.16
we have

E(—oo,zf)(Hi’vj) - E(_OO727](H27%') = N(Z,),
1 ifzy € o(HY)

E(foo,mr)(H}z’Uj) - E(foo,ZJr](HrOL’Uj) = N(Z+> +
0 otherwise.

10.3 A proof for finite-rank perturbations

We want to remark that, if the perturbation by — by is finite rank, then The-
orem 10.13 can be obtained more easily from Corollary 10.8. That is, for the

finite-rank case Section 10.2 can be replaced by this one.
Lemma 10.18. If W(ug 4 (2),u1,—(z)) = 0 near oo, then z € o(H1).

Proof. By Lemma 3.7 both solutions are linearly dependent near co and hence

u1,—(z) is square summable near oo, thus z € o(H7). O

Lemma 10.19. Let z,\ € [Ao, M]Noess(HY) = 0. If dimRan(H) — H}) < oo
and X € p(HY) N p(HY), then

Co,2(A) = No(N).

Proof. We have Ny(\) < co by Theorem 7.10. Moreover, W (ug 4+(\), u1,—(N))
is either positive or negative near co by Lemma 10.18 and Lemma 7.4. Let N,
such that (bg — b1)(j) = 0 and Wj(ug 4 (A),u1,— (X)) # 0 for all j > N. Then,
W, (uo,+(N),u1,—(N)) = c is constant for all j > N —1 by

Wit1(uo,+(A),u1,—(A) — Wj(uo 4+ (A), u1,—(A))
= (bo — b1)(j + Duo,+ (A j + Dur, (A, j+1)=0

and hence all nodes of W (ug 1 (\), u1,— (X)) are to the left of V.
Let n € _Z,,v = up,4(2), and let ¢; ,(A), j = 0,1, be any solutions of (7, —
Mu = 0, then, W;(¢0.n(A), p1,n,(X)) = € is constant for all j > N — 1.
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By Lemma 8.21 there exist solutions ¢g,(A) of (79, — A)u = 0 such that
won(A,n) = 0 and ¢ n(A,m) = ug+(A\,m) at m = —1,...,N. We have

#0,8-1](00,n(A),u1,— (X)) = #@,n-1(u0,+(N),u1,—(N)) by Lemma 8.26 and
WO(u0,+(>\)7u1,—()\)) 3& 07 and thus

CO,Z(A) = E(—oo,)\)(H%’v) - E(—oo,A] (Hg’z) = #(O,n] (wO,n,n()\)vwl,n,O()\))
= #0.8-11(V0,n,n(A), V1,0,0(A) = #0,8-1](@0,n(A), u1,— (X)) = No(A)

holds for all n sufficiently large. O
Lemma 10.20. Let [z—, 2] Noess(HY) = 0. If dimRan(HY — H}) < oo, then
E[z,,er)(H}-) - E(z,,z+](H3—) = NO(ZJr) - NO(Z*)'

Proof. Let A_ < Ay, At € (2, z4) such that Ay € p(HY) N p(HL). Then, by
Lemma 10.19 and Lemma 10.3 we have

Co,-_ (A=) = No(A=) = No(2-) + Epo_x_)(HL) — E(._ 5 (HY),
Co,2; (A+) = No(A4) = No(z4) — Ex, oy (HY) + Eny 2y (HY).

Now,

B y(HY) = B2 (HY)
=FE,_(Hy)—E._\ (H)) + Ep_ ) (HY)
~ B (HY) + B, o (HY) = B, 2 (HY)
= No(A-) = No(z-) + No(A4) = No(A-) + No(z4) — No(A4)

holds by Lemma 10.5. O
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Chapter 11

Infinite Jacobi operators

It remains to look at gaps of the essential spectrum of infinite Jacobi operators.
This is done in the present chapter, where we in the end complete the proof of
Theorem 1.1.

11.1 A first theorem on the line

From now on we use the notation from Subsection 8.2.2 again and remark, that
u_ now denotes a solution fulfilling the left boundary condition of H, that is,

u_ € £*(—N). Moreover, we abbreviate

NO(Z) = #(—oo,oo] (u07+(z),u17_(z)), (111)
N1(2) = #(—o0,00) (0, (2), u1,+(2))- (11.2)

Since we are interested in the discrete spectrum of H we assume
[2—, 2] Noess(Hy) = 0, (11.3)

z_ < z4, and hence we also have [z_,z4| N aess(Hggjﬁ_) ={ for all m € #,.
For all 2,2 € [z, 2,] we have 79 — 2 '~” 7y — % by Theorem 7.11, thus Np(z)
and N (z) are finite numbers.

First of all, we approximate the infinite operators by semi-infinite operators
and compare their spectra as well as the number of nodes of the corresponding

Wronskians, which is done in the following lemma:

Lemma 11.1. Let by | by near +co and near —oo, and z € [z2_, 24 |Noess (Ho) =
0. If w =uy,_(2), then for all X\ € [z—,z4], X\ # z, there exists an Ny and a
constant Co »(\) € Z such that

No(A) < Co,2(AN) = #(mi00) (V0,m,+ (A); Y1,m,m(N))
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holds for allm < Ny, m € _Z,.
If w = wuo,—(2), then for all X € [z_,2z4],\ # z, there exists an Ny and a
constant C1,,(\) € Z such that

Nl ()\) g Cl,z(/\) = #(m,oo] (wO,m,m(A)vwl,m,—O—(/\))

holds for allm < Ny, m € _#,,. Moreover,

Epn(Hy) — By (Ho)  if A> 2z

CO,z(/\) _NO(Z) = Cl,z(/\) —Nl(z) = .
—En ) (H1) + E(Ho) if A<z

and if A # z, then N1(X) < Co (N) and No(A\) < Cq1.(N).

s

Proof. Let all nodes of W (ug 4(2),u1,—(2)) and W (ug,—(2),u1,4(2)) be to the
right of N. First, let w = uy,—(2), where m € _#,,. If A < z, then there exists
an Ny < N such that by Lemma 8.16 and Corollary 8.9

E[/\yz)(Hrlﬁ,i) = E(A,z)(Hrer,ZJr) = E(A,z)(Hl) = M

holds and moreover by z +bg — b1 | z and Lemma 8.10 we have Ej ) (Hglti) =
Ex21(Ho) = My for all m < Ny. Thus, by (1.17) and Lemma 8.20 we have

My — My = E[A,z)(Hrlr{;ZJr) — Bz (H2Lw+)
= #(m,oo] (¢O,m,+(z)a 'l/)l,m,m(z)) - #(m,oc] (¢O,m,+(>\)a wl,m,m(A)) (114)
= NO(Z) - Co,z(A)

for all m < Ny. If A > 2z, then there exists an N, < N such that we
have E[zyA)(H},er) = Ep\(Hy) = M, by Corollary 8.11 and moreover by
Lemma 8.16, z + by — by | z, and Lemma 8.8

B ) (i) = Bie ) (Hyi'y) = Bz ) (Ho) = Mo
holds for all m < Ny. Now, by (1.17) and Lemma 8.20 we have

My — My = Ep. 5 (Hy7 ) — By (HY)
= #(m,oo] (wO,m,—&-(/\)a ¢1,m,m(/\)) - #(mpo] (¢O,m,+(z)7 wl,m,m(z)) (115)
= Co,.(\) — No(2)

for all m < N.
Now, let w = ug,—(2), where m € #,,. If A < z, then there exists an Ny < N
such that we have E(A,z](Hgl’ﬁ) = B2 (Ho) = My < oo by Corollary 8.11 and
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moreover by Lemma 8.16 and by z + by — by T z and Lemma 8.8

Epp oy (Hy') = By oy (Hy") = E s (Hy) = My < o0
holds for all m < Ny. Thus, by (1.17) and Lemma 8.20 we have

My — My = E[,\,z)(HrI;{}UJr) — Ei 2 (Hgﬂr)
= #(m,oo] (wO,m,m(z)v ¢1,m,+(2)) - #(m,oo] (%,m,m()\), 1/11,m,+()\)) (116)
= Nl(Z) — Cl,z()\)

for all m < Ny, m € _Z,. If A > z, then there exists an Ny < N such that by
Lemma 8.16 and Corollary 8.9

EGx(Hy? ) = B (Hp?) = By (Ho) = My < 00

and moreover and by z + by — by T 2z and Lemma 8.10 we have Ej, y)( ;@ b)) =
B\ (Hy) = M, < oo for all m < Ny. Now, by (1.17) and Lemma 8.20 we have

My — My = B, 5 (H,") — Econ (H2L)

= #(m,oo] (wO,m,m(/\)a r@[}l,m,—i-()\)) - #(mpo] (1/}O,m,m(z)y ¢1,m,+(2)) (117)
= C1,:(A) = Ni(2)

for all m < Ny, m € Z,.

For the remaining inequalities, note that in either case, if A # z, there ex-
ist L, K such that bo(j) — b1(4) = 0 for all j < L,j5 > K, and moreover
W (uo,+(N),ur,—(N) as well as W(ug,—(N),u1,+(N)) is of one sign (or vanish-
ing) forall j < Land all j > K

Let j = 0,1, then by Lemma 8.23 there exist solutions ¢; n(A) of (7jm —
A)p(A) = 0 such that ¢; (A, m) = 0 and @;.m(A\,n) = u;_(A\,n) at n =
K —1,...,L+1. The solution u; 1 () is a solution of (ij — A)u = 0 above m.
Moreover by Lemma 8.16 we have \ € ,o(H0 - )ﬂp(H %) for all [m] sufficiently
large, thus by Lemma 8.26 we have

CO,z()\) = #(m | (’(/}0 m Jr()‘)a (pl,m()‘)) = #[m,oo] (¢0,m,+(/\), Qpl,m()\))
> #ix,0)(Vo,m,+(A)s 1,m(N) = #x,0)(V0,m,+ (A), P1,m(A))  (11.8)
= #x,0)(w0,+(N), ©1,m(N) = # k1) (10,4 (A), u1,— (X)) = No(N)

as well as

CO,z(/\) = #(m,oo](s@o,m()\)71/)1,m,+()\)) = #[m,oo] (<,00,m(/\)’7/11,m,+(/\))
= #1x,0)(P0,m(A); V1,m,4+(N) = #(x, 1 (P0,m(A), Y1,m,+(A)) - (11.9)
= #x,)(o.m(A);u1 + (V) = #x 0y (uo,— (V) u1,+ (V) = Ni(N),
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if w = w; (%), and analogously

C1,2(N) = F#(m,00) (0,m> V1,m,+(N) = F(x,L1(P0,ms Y1,m,+(N)  (11.10)
= #x,0)(Po,m(A); u1,+ (V) = #x ) (0,4 (A); ur,— (V) = Ni(N)

and

Cl,z()‘) = #(m,oo]([qpo,m,+()‘)a Qpl,m()‘)) > #(K,L] (¢O,m,+(>‘)7 Qol,m(A)) (1111)
= #r,0)(0,+(N), 1.m(N) = # (k1) (10, + (N), u1,—(N) = No(N)
holds if w = ug,—(2). O

This leads to the infinite counterpart of the inequalities, which we’ve already

obtained in the semi-infinite case:

Lemma 11.2. Let by | by near +o0o and near —oo, [2_, 21| Noess(Hy) = 0, and
1,7 =0,1, then

E(z_,Z+)(H1) - E(z_,z+](H0) < M(ZJr) —j\/j(z,),
B .. (Hi)—E._ .. (Ho) >

Proof. By Lemma 11.1 we have

CO,er (Z—) = NO(Z+) - E(z,,z+)(H1) + E(z,7z+](H0) P A/'j(z—)7 (1112)
Ciz(22) = Ni(24) = Bz o) (H1) + Bz »)(Ho) 2 Nj(2-),  (11.13)
CO,zf (Z+) = NO(Z*) + E[z z+)(H1) - E(z_ z+)(HO) p j\/j(z+)7 (1114)
Ci. (z4)=MNi(zo) + E._ . (H1) = E_ .. (Ho) > N (z4). (11.15)

O]

In the following lemma we now already obtain one part of Theorem 1.1.

Lemma 11.3. Let by | by near 400 and near —co, z & 0ess(Hyp), then
No(z) = Ni(z). (11.16)
Proof. Let z_ < z < zy4 so that
ze € p(Ho) Np(Hy) and [z_,24| Noess(Ho) =0
holds. If z & o(Hy), then by Lemma 11.2 we have

E._ . (Hy) = E._ .)(Ho) = No(2) = No(2-) = Ni(2) = No(2—),  (11.17)
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hence Ny(z) = Ni(2). If 2 € o(Hy), then by Lemma 11.2 we have
B .y (H1) = Bz 2 )(Ho) = No(24) — No(z) = No(24) — Mi(z),  (11.18)

thus My(z) = N1(z). If we have z € o(Hp) No(Hy), then ug —(2z) = ug +(2) and
u1,—(z) = w1 +(2) holds, hence Ny(z) = Ni(2). O
Now, the following is well-defined:

Definition 11.4. Let by | by near 400 and near —oo, z & 0.55(Hyp), then

N (2) = #(—o0,001 (10,4 (2), u1,-(2)) = F#(—00,00] (20,— (2), u1,+(2))-

From Lemma 11.2 and Lemma 11.3 we now obtain a first version of Theorem 1.1,
but with the additional assumption (1.21).
Corollary 11.5. Let [z, 2] N0oess(Ho) = 0 and let by | by near +oo and near
—o0. If z_ ¢ o(Hy) and z4 & o(Hyp), then

E[z_,z+)(H1) - E(z_,z+](H0) = N<Z+) _N(Z*)'

With respect to the Sturm-Liouville and Dirac counterparts we refer to Re-
mark 10.9. It remains to eliminate the assumption

z_ ¢o(Hy) and z4 € o(Hy), (11.19)

what is done in the sequel.

11.2 The finite-rank case

First of all, we eliminate the assumption (1.21) for the case of finite-rank per-
turbations.

Lemma 11.6. We have

+oo = z € o(Hy)

W (uo,+(2), u1,— (%)) vanishes near (11.20)

—00 = z € o(Hp).

Proof. If W(ug +(2),u1,—(z)) vanishes near 400, then by Lemma 3.7 both so-
lutions are linearly dependent near +oco and hence uy _(z) is square summable
near +00. Analogously near —oo. O

Lemma 11.7. Let z,A € [2—, 24| Noess(Hy) = 0, 2 # XA, and let moreover
dimRan(Hy — Hy) < oo and \ € p(Hy) N p(Hy) hold, then

Co-(N\) = N(N).
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Proof. By

W1 (o4 (A), ur,— (X)) = Wa(uo,+(A), ur,—(A))
= (bo — bl)(n + 1) ’LLO,+(>\7 n—+ 1)U1’,()\, n -+ 1)
T
there exists an N such that the Wronskian is constant (and nonvanishing by
Lemma 11.6) for all j < —N and for all j > N. Thus, all nodes of the Wronskian
are in —N,...,N — 1. By Lemma 8.23 for all m € _#,,, where w = u; _(z),
there exist solutions ¢, (A) of (71,m — A)@m (A) = 0 such that ¢, (A, m) = 0 and
em(A,n) = u;—(A\,n)holdsat n=—-N—1,...,N+1.
By Lemma 8.26, W_n (ug,+(A), u1,—(A\)) # 0, and Wi (ug +(A), u1,— (X)) # 0 we

have #_n N7 (u0,+(A), m(N)) = # (-~ Ny (u0,+ (), u1,— (A)) for all m sufficiently
large and thus

CO,Z()‘) = #(m,oo] (wO,m,-l-()‘)v ‘Pm(/\)) = #(7N,N] (u0,+(/\)’ @m()‘)) = N()‘)
since W (¢0,m,+(A), m (X)) is constant and nonzero for all j < —N, j > N. O
Lemma 11.8. Let [z—, 24 Noess(Hp) = 0 and dimRan(Hy — Hy) < oo, then

E[z,,zur)(Hl) - E(z,,z+]<H0) = N<Z+) _N<Z*>‘

Proof. Let A\_ < Ay, Ax € (2, 24) such that Ay € p(Hp) N p(H;y). Then, by
Lemma 11.7 and Lemma 11.1 we have

C07Z+()‘+) :N()‘-i-) = N(Z"r) - E()\+,Z+)(H1) + E(>\+’Z+](H0)a
Co-_ (A=) =NAL) =N(z2) + El._x y(H1) — E._ x_y(Ho).

Now, by Corollary 11.5 we have

Ei._ . (H1)— E._ .. (Ho)
= E.__)(Hy) — E._ x_1(Ho) + Epn_ x, ) (Hy)
— En_ ) (Ho) + Epn, - (H1) — By 2,1 (Ho)
=NAZ) =N(z2) + N(A) = N(A2) + N(z4) = N(Ay)
— N(2y) = N(2).
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11.3 Main theorem for infinite operators

Now we look at a rank-one perturbation of an infinite Jacobi operator, and give

a self-contained proof, which shows, how an eigenvalue is moved to a different

position.

Lemma 11.9. Let z- < z < z1, z € 04(H), [2—,z4]No(H) = {z}, ¢ # 0,

and

b(0)  a(0)
He = a(0)  b(1)+e a(l) : (11.21)
a(1) b(2)
Then,
ze0(H) — uy(z,1)=0 < u_(2,1)=0 (11.22)
— z¢co(H ) <= z€o(H_,). (11.23)

If Woluy(z1),u—(21)) and Wo(us(z4),u—(24)) — euy (24, Du_(z4,1) are of
the same sign (and non-zero), then

B zy(He) = Eo_2p)(He) =1
E(z,z+)(HE) ng >0, u+(z, 1) 7é 0
= E(z,,z) (HE) ife <0, ’U,+(Z, 1) 7& 0 (1124)
Ey.y(He) otherwise.

Proof. The Wronskian W (u4(z),u—(z)) vanishes and W(u4(z4),u_(z4)) is
constant and nonvanishing, thus we have #_ o oc](u4(2),u—(2)) = —1 and
F(—o0,00] (Ug(2+),u—(2£)) = 0. For all A & 0.4s(H) there exists a solution
Ue, £ (A) of (7c = A)u = 0 such that ue 4 (A, 7) = ux (A, j) for all £5 > +1. Hence,
W, (e 1 () 0 (N)) = W (0 (V) for all j > 1. And W (ue 1 () u_ ()
is constant for all j < 0 by

Wi (ue,+(A), u— (X)) = W1 (ue, 4 (V) u— (X))
= (b(4) = b(j))ue (A, J)u—(A,j) =0
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and we have

Wo(ut+(A),u—(A) = Wo(ue,+(N), u—(A))
=W (u€,+()\), u*()‘)) - WO(“’E,Jr()‘)? u*()‘)) = 5”6#()" 1)”* ()‘7 1)‘

If either Wo(uq(24),u—(2+)) and Wo(ue +(24+),u—(z+)) both are positive or
both are negative, then

#(700,00] (u8,+(zi)> U— (Zi)) = #(700,00] (U’Jr(zi)’ u*(zi)) =0
holds and hence by Lemma 11.8 we have

1= B o) (He) = Bpa_ o) (H) = E(o_ ) (He)
= #(—oo,oo] (UE,-O-(Z-O-)» U— (Z-i-)) - #(—oo,oo] (u57+(2_), U— (z—)) =0.
By W(ue 4+ (24),u—(22)) = W(te + (22 ), e, — (z1)) is nonvanishing near —oo we

have z1 € p(H.), thus Er,_ . j(H.) = E._ .. (H:) = 1. Now, by ¢ # 0 and
Wo(ue +(2),u—(z)) = —eu4(z,1)? we have

-1 ife<O0oruy(z1)=0,

# (—o0,00] (te,+(2), u-(2)) = {0 ife > 0.

Moreover, by u_(z,j) = ue,—(2,7) for all j <1 we have

2 € o(H.) = Wlumy (o), e () = 0 = Woltie s (2), u_(2))
<~ ui(2,1)=0 <= u_(2,1)=0 (11.25)

— zco(H1 ;) < zeo(H_7).

)

If uy(2,1) # 0, then by Lemma 11.8 we now have

0-FE._.(H:)=E__ . (H)—-E__.(H.)
= F(—o0,00] (Ue,+(2), u—(2)) = #(—o0,00] (Ue 4 (2= ), u—(2-))
1 ife<0
0 ife>0.
Hence, E(z,,z)(Hs) = E(z,,z](Hs) =1life <0and E(z,,z](Hs) =0ife>0. O

The criterion on the signs of the Wronskian from the previous lemma can also

be formulated in terms of the Green function, see

Remark 11.10. The Wonskians W (u4(A), u—(X)) and W (ue 4+ (N), ue,— (X)) are
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constant and we have
W (1ot V), e (V) = W (s (V) u (V) — g (L, Du_(A, 1) (11.26)

If N € p(H), then W (uy(A),u_(N)) #0 and

ur (A Du— (A1)
W (u—(A), uq (M)

Gu(\1,1) =

exists. If so, then by

W(ug(A),u— (X)) —eur (A, Du—(z4,1) e ur (A, Du— (A1)

U< Wy (V)0 (V) W (V) s (V)

both Wronskians are of the same sign (and non-zero) if and only if
—1<eGy(\1,1). (11.27)

If an infinite Jacobi operator H has an eigenvalue at z, then, in the approximat-
ing sequence there’s a semi-infinite Jacobi operator of sufficiently large dimen-
sion, which has an eigenvalue near z, since the semi-infinite operators converge

in strong resolvent sense.

Lemma 11.11. Let z_ < z < zy, [2—,24]|N0oess(H) =0, and z € o(H). Then,
for all N € Z, there exists an M < N, Z € (z_, z4) such that Z # z and

up(z, M) #0, wui(z,M)=0.

Proof. Let J = {n € Z | uy(z,n) # 0}, then J is an infinite set. Let zp &
[2_,24], then 20l @ H, + =% H as n — —oo,n € J, by Theorem 2.21.b. Thus,
by Theorem 2.9 and Lemma 2.19 we have

liminfE(zi,z”(Hn’_,_) = liminfE(zﬂZJr)(on S5 Hn7+) > E(zﬂZJr)(H) > 1.

n——oo n——oo

neJ neJ

Hence, for all N there exists an M < N, M € J, such that E,_ . y(Hu 1) >
By u4(z, M) # 0 we have z & o(Hps,4), thus there exists some 2 # z, Z

1.
S
(2=, 2z4) No(Hp+). Now, ug(Z, M) = 0 holds. O

Now, we're ready to show, that the assumption (1.21) can be dropped if we look
at the vicinity of a point, which is in the spectra of both Jacobi operators.
Lemma 11.12. Let by | by near 400 and near —co, z— < z < z4, z € 04(H;),
and [z_,z4 ] No(H;) = {2z}, where j = 0,1, then we have

E[z,,z)(Hl) - E(z,,z](HO) = N(Z) _N<Z*)7

E[z,z+)(H1) - E(z,z+](H0) = N(ZJF) _N(Z)
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Proof. Let M, Z € (z—,z4), Z # z, so that
uo,+(z, M) #0 and wug4+(3,M)=0

and moreover by — by > 0 and W(ug +(2),u1,—(z)) is of one sign (or vanishing)
to the left of M (use Lemma 11.11). Let € < 0 so that

1
75>GH()\,M,M) at A =24,2 (11.28)
and, if Was—1(uo,+(2),u1,—(2)) # 0, such that Was_1(uo,+(2),u1,—(z)) and

Wir—1(uo +(2),u1,-(2)) — eug,+ (2, M)uq,—(z, M) are of the same sign. If (by —
b1)(M) # 0, then we further assume —e < W. Let

Ho = a(M—=1) bo(M)+e  a(M) , (11.29)

then the solutions @4 and u4 coincide above M and moreover by ug 1 (2, M) =0
the solutions at z actually coincide everywhere. Hence, at Z also the Wronskians
coincide everywhere and by comparing the weights of their nodes (there is no
node at M — 1 by War—1(uo,+(2),u1,—(2)) = War(uo+(2),u1,—(2))) we find

#(—o0,00] (U0, 1 (2), w1, (2)) = N(2). (11.30)

By Lemma 11.6 the Wronskian W (g + (%), u1,—(2)) is not vanishing near —co
and by by — by = 0 to the left of M we have

#(—o0,00] (U0,4(2), u1,—(2)) = F#(nr—1,00) (T0,+(2), w1, (2)),
#0100 (T0,+(2), w1, (2)) = #ar,00) (w0, 1 (2), w1, (2)) = N (2),

hence it remains to look at a possible node at M — 1: if (by — b1)(M) > 0,
then (bg + ¢ — b1)(M) > 0 and hence #ar—1(Go,+(2),u1,—(2)) > 0. If (b —
b1)(M) = 0 and Was(uo,+(2),u1,—(2)) # 0, then Wy (to +(2),u1,—(2)) and
Wir—1(to,+ (%), u1,— (%)) are of the same sign, thus #pr—1 (%o, 4 (%), u1,—(2)) = 0.
If (bo — b1)(M) = Wi (uo +(2),u1,—(2)) = 0, then W(ug +(2),u1,—(z)) vanishes
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near —o0, thus #(_oc,o0) (o, +(2),u1,-(2)) = #[ar,00)(t0,+(2),u1,-(2)) =1 =
N (z). Hence, in either case we have

#(—o0,00) (0,4 (2), u1,— (2)) = N (2).

By Remark 11.10 and Lemma 11.9 we have

N Ei . (Hy) ifz<z
o o(Ho)=1=4 70700 ~
E._ . (Hy) ifz<2z

Thus, by Lemma 11.2 and Corollary 11.5 if Z < z, then

N(z) =N(Z2) = Ez,.)(H1) — Ez .)(Ho)
= Ejz.)(H1) — Egz ) (Ho) = Ejz,.)(Hy) — Ez,.(Ho) (11.31)
= #(—o0,00] (U0, +(2), U1, (2)) = #(—o00,00) (T0,4+(Z),u1,-(2)) = N(2) = N(2)

and if z < Z, then

N(2) = N(z) < Ep.z)(H1) — E(. 5)(Ho)
= E, 5 (H1) — B, 5(Ho) = Ej, 5(H1) — E(, 5(Ho)
= E._ 5(H) — B(-_ 5(Ho) = (Blo_ »(H1) — E(._ »)(Ho)) (11.32)
= F(—o0,00] (U0, +(2), U1, (2)) — #(—o00,00] (0,4 (2-),u1,—(2-))
— (F(=o00,00) (0,4 (2), u1,—(2)) — #(—00,00] (T0,+ (2-), u1, - (2-)))
<N(E) - N(2).

In the first case we now obtain our claim by

Ep._ ) (Hy) = E(._ ,(Ho)

=E._3 (Hy) — E.._ (Ho) + E[E,z)(Hl) —Ez (Ho) = N(2) = N(2-),
B .. (H1) — E(...(Ho)

=Eiz. () = Bz, )(Ho) — (Ejz.)(Hy) — Eiz2)(Ho)) = N(zy) = N(2),

and in the second case by

Elopy(Hy) = B2z, (Ho)

= EL. 5 (H1) — E. 5 (Ho) + Ejz . (H1) — Ez 2, (Ho) = N(24) — N (2),
Ep._ o (H1) — E(._ -)(Ho)

= E._ 5 (H1) = Eo_ 5 (Ho) = (Bjz 5y (H1) — Bz, 5 (Ho)) = N (2) — N (2-).

O
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Finally, the following lemma completes the proof of Theorem 1.1.

Lemma 11.13. Let [2—, 2] N0ess(Ho) = 0 and let by | b1 near +00 and near
—00, then
E[z,,er)(Hl) — E(z,,er](HO) = N(Z+) —N(Z_). (11.33)

Proof of Lemma 11.13, which is (1.13). Let e; > 0 be sufficiently small such
that
[+ — et 24 +e4] N (o(Ho) Uo(Hy)) € {24}

and let « = z4 — ey, =24y +ey. If 24 € o(Hy) No(Hy) or z4 & o(Hy),
then by Lemma 11.12 and Lemma 11.2 we have Ey, . \(H1) — E,.,1(Ho) =
N(zy)=N(a). If z & o(Hy), then by Lemma 11.2 E,, g (H1)—E(., g(Ho) =
N(B) — N (z4) holds and hence by Ej, gy(H1) — E(a,5/(Ho) = N(8) — N () we
have

E[a,z+)(H1) - E(a7z+](H0)
= Elap)(H1) = E(a,p)(Ho) = (B, p)(H1) — E(-, 5)/(Ho)) (11.34)
=N(B) = N(a) = (N(B) = N(21)) = N(24) = N(a).

Let e_ > 0 be sufficiently small such that
[ — o 2 +e_]N (o(Ho) Uo(Hy)) C {=-}

and let v = 2_ —e_,d = z_ 4+ e_. If z_ € o(Hp) No(Hy) or z_ & o(Hy),
then by Lemma 11.12 and Lemma 11.2 we have E|,_ 5 (H1) — E(._ 5(Ho) =
N(0)=N(z-). If z_ & 0(Hy), then by Lemma 11.2 Ey, . y(H1)— E(,,._(Ho) =
N (z_) — N(7) holds and hence by Ep, 5)(H1) — E(y 5(Ho) = N(6) = N(7) w
have

@

E._s(H1) — E(._s(Ho)
= E[’yﬁ)(Hl) - E('y,5] (HO) - (E['y,zf)(Hl) - E('y,zf](HO)) (11'35)
=N(@©) =N() = N(z-) =N((7) =N(6) = N(z-).

By Lemma 11.2 we have Ej5 ) (H1) — E(5,0)(Ho) = N(a) — N(0) and thus,

Ei._.(H1) = E._ .. )(Ho)
= Ep._5)(Hy) — E(._s)(Ho) + Ej5,0)(H1) — E(5,0)(Ho)
+ Bla,2,)(H1) = Eq,,1(Ho)
_ N @) = Neo) + N (@) = N(6) + N (z1) = N(a) = Nz4) = N(z_).
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Appendix A

Linear interpolation

Let 7.,¢ € [0, 1], denote the difference equations which arise from linear inter-

polation of the coefficients ag, bg and aq, by, that is,

a. =ag—e(ag —ay) and b. =by —e(bg — by). (A1)
=A =Ab

Clearly, ag,a; < 0 implies a. < 0 and hence 7. corresponds to a Jacobi matrix

Hzo,n = Hgo,n - g(Hgo,n - Hrng,n)a (A2)
=AHny,n

where H,, , are the matrices from (2.43). The perturbation matrix AH,, ,
is tridiagonal and symmetric, but not necessarily a Jacobi matrix (i.e. some
elements of a could be zero). Now, fix initial values u(ng),u(no + 1) € R and

let ue be the solution of (7. — z)u. = 0 fulfilling
ue(ng) = u(ng), ue(no+1) =u(ng+1). (A.3)

Lemma A.1. Letn € Z and

=Z,:00,1] =R (A.4)
e us(n),
then
=, € C*([0,1],R). (A.5)

Proof. We use mathematical induction: the claim holds at n = ng and n = ng+1

since =2, and Z,,41 are constant. For all n > ng + 1, respectively n < ng, by
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(Te — 2)ue = 0 we have

1
ue(n) = m(fas(n —2ue(n—2)— (be(n —1) — 2)uc(n—1)) (A.6)
and uc(n) = ﬁ(—ag(n + Duc(n +2) — (be(n + 1) — 2)uc(n + 1)). Assume
the claim holds at ng,...,n — 1, respectively at n + 1,...,ng, then we have
Z, € C1([0,1],R) for all n € Z by a. < 0. O

Let the dot denote the derivative of u(n) with respect to e, that is,

ur(n) —us(n) .

ie(n) = 1i A.
ie(n) = lim 2= (A7)
Lemma A.2. There exist unique sequences pe,0. € ((Z,R) where
pe(n),0-(n) € C*([0,1],R) (A.8)
for all n € Z. Moreover,
ue(n) = pe(n) sin b (n), (A.9)
—ac(n)uc(n+ 1) = pe(n) cosb.(n),
where p. >0, 0:(no) € (—m, x| is constant, and
[0c(n)/7] < [0c(n+1)/7] < [0c(n)/m] +1 (A.10)

holds for alln € Z.

Proof. At € =0 let pg, 0y be the Priifer variables of ug as introduced in (3.19).
By the previous lemma the function

fn:[0,1] — R? (A.11)
€ fn(e) = (—ac(n)uc(n + 1), uc(n)) # (0,0),

is continuously differentiable with respect to £ in each component. Let p.(n)
and 0.(n) be the polar coordinates of f,(¢) such that

0c(n) = arg fn(e) + kn(e)2m (A.12)

where arg f,(¢) € (—m, 7] is the principal value and k,(¢) € Z is choosen such
that p-(n) and 6.(n) are continuous with respect to €. Then, p.(n) and 6.(n)
are continuously differentiable since f,(g) is, 0:(ng) € (—m, 7] is constant, and
(A.9) holds. It remains to show that for all n either

[0c(n+1)/m] = [0=(n)/m]  or [0c(n+1)/x] =[0(n)/m]+1 (A.13)
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holds: therefore fix some n € Z. First of all, note, that if the claim holds at
some gq € [0, 1], then by Lemma 3.10 there exists some k € Z such that

0., (n) € kr + (0, g], 0., (n+1) € kr + (0, 7] (A.14)
<= U, has no node at n,
Oy (n) € km + (g,ﬂ], Oco(n+ 1) € km + (7, 27)

<= u,, has a node at n.

Now, let X,, (resp. X, 1) be the (by continuity) closed subset of [0, 1] where

ue(n) (resp. ue(n + 1)) vanishes. Since the zeros of u are simple we have
X’n N Xn_;,_] = @

Let O be a connected component of [0,1] \ (X,, U X,,41) and suppose (A.13)
holds at some ¢ € O. Then, by continuity of 6.(n) # 0 mod 7 and 6.(n+1) # 0
mod 7 (A.13) holds for all € € O.

Let C,, be a connected component of X,, and suppose that in every vicinity of
C), there exists an gy such that (A.13) holds at eo: since 8¢(n) is continuous
and X, X,,+1 are closed disjoint sets there exists a vicinity V' of C,, such that

0.(n) € (Ir— ~,Ir+2), leZ,
2 2

and 6.(n + 1) # 0 mod 7 holds for all € € V. Now, choose gy € V such that
(A.13) holds at €g, then (A.14) holds at gy and hence we have 0.,(n + 1) €
(Ir, (I 4+ 1)m). Since 6.(n + 1) is continuous and 6.(n + 1) # 0 mod 7 we have
Oc(n+1) = (Im, (I + 1)m) for all € € V. Hence, there exists a vicinity V of Cp,
such that (A.13) holds for all e € V.

Let C),+1 be a connected component of X, 11 and suppose that in every vicinity
of C,41 there exists an gp such that (A.13) holds at &p: since 6.(n + 1) is
continuous and X,,, X,, 1 are closed disjoint sets there exists a vicinity V of

Ch 41 such that

™
2
and ue(n)us(n +2) < 0 (and hence sinf.(n)cosf.(n + 1) < 0) holds for all
e € V. Now, choose g9 € V such that (A.13) holds at g and hence by (A.14)
and sinf.(n)cosf.(n + 1) < 0 we have 0.,(n) € ((I — 1)m,ln). Since 0.(n) is
continuous and 0.(n) # 0 mod 7 we have 0.(n) = ((I — 1)m,In) for all e € V.
Hence, there exists a vicinity V' of Cp,41 such that (A.13) holds for all e € V.
Since the union of the mentioned vicinitys V' of all connected components of
X, and X, 41 and the open set [0,1]\ (X,, U X,,41) is a cover of [0, 1] the claim
(A.13) now holds for all € € [0, 1] since it holds at € = 0. O

f.(n+1) € (lﬂ—g,ler ), lez,
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A.1 Derivative of the Priifer angle

Consider the solutions s. of (7. — z)s. = 0 with initial values s.(ng) = 0 and
se(ng+1) =1
Lemma A.3. Letn >ng+2 and 5, = SE’l(ng,n+l)7 then
, d
as(n)se(m)se(n+1) — —(a:(n)s:(n))sc(n+ 1) (A.15)

de
= (8.,AHp, nt15:) + 2Aa(n)s:(n)sc.(n + 1).

Proof. We have

ae(n)ss(n)ég(n + 1) — %(ag(n)ss(n))sg(n + 1)
i ac(n)sc(n)s,(n +1) — ap(n)s,(n)sc(n + 1)

r—e r—=e¢

= lim M5 (s.,s,.)(r —e)™*

r—€

= hm (r - E)il(WZil(&s; S'r‘) - WOE’T(SE, ST‘)

T—E

—(be(n+1)=b-(n+1))sc(n+1)sp(n+1))

n

= lim(r — &)™ (D (a: () — ar (1)) (s: (G + Vs (G) + 52 (7)sr (G + 1)

T—€ j:O
+ Z(be(ﬁ — b, (7))5(5)s0(4))

= }L}le ao(j) —a1(5))(s:(j + 1)s-(4) + sc(4)sr (5 + 1))

+ Ab(j)s=(5)sr (7))

= Z@Aamsg(j)ssu 1) + Ab(7)s-(j)?)

n+1
—Z Aa(j)s:(j)s<(j+ 1)+ Ab(j)s=(j —i—ZAag—l)sE(j — 1)sc(4)
j=1 j=1
and hence
—Zss ()5 + 1)+ Ba(j — 150 — 1) + Ab()s- (7))

+Aa( )se(n)se(n+1)

:Z J(ATs.)(5) + Aa(n)se(n)s:(n + 1),
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where we used equations (3.11) and (3.4), se(ng) =0,a. — a, = (r —€)Aa, and
be — b, = (r — e)Ab. Moreover, we have

(Ats:)(j) forallj=1,..., n—1

AHnU’n 1§6 ) =
( + )(]) {Aa(n _ 1)S€(n — 1) + Ab(n)ss(n)a

and hence

<§€7 AHno,n+1§€>
n—1

Z $e(1)(ATs)(4) + se(n)Aa(n — 1)sc(n — 1) 4+ sc(n)Ab(n)s(n)

.
Il
—

5:(4)(ATs:)(J) — se(n)Aa(n)sc(n + 1)

Il

1

J
proves the claim. O

Lemma A.4. Let n > ng + 2, then

A <§57AHno,n+1§6> <§87H20,n+1§5> <§€’H71Lo,n+1§8>
O:(n) = 5 = 5 - 5 (A.16)
pe(n) pe(n) pe(n)

holds for all € € [0, 1].

Proof. We have Ea %n) = f‘é%g, hence
a .
(n + ) d7( as(”) ps(”) Cos 95(”))
Aa(n)

= ( )2 pe(n) cos O (n) — a. (n)_l(ps(n) cos 0:(n) — pe(n) sin 0, (n)es (n))

a:(n) "' (Aa(n)s.(n + 1) = pe(n) cos 0= (n) + s:(n)-(n))

and

% (ac(n)se(n)) = —Aa(n)s:(n) + a-(n)(p:(n)sin O (n) + pc(n) cos O (n)96 (n)).

ac(n)se(n)ée(n +1) — se(n + 1)%(%(”)85(”))
Y(Aag(n)se(n+1) — pe(n) cos 0-(n) + sc(n)b.(n))

+ se(n+1)(Aa(n)s (n) ac(n)pe(n) sin 0 (n)
(
(
(

— ac(n)pe(n) cos 0 (n)b-(n))
= 2Aa(n)sc(n)s:(n 4+ 1) — pc(n) sin O (n)pe(n) cos O (n)
+ pe(n) sin 0= (n)p<(n) cos 0 (n )+6‘5(n)(35(n)2 +a:(n)*sc(n +1)%)
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= 2Aa(n)s.(n)s.(n + 1) + pe(n)?0(n)
and Lemma A.3 the claim holds. O

Lemma A.5. Let AJ >0, then #9 n—1)(50,51) = 0 and

2 = #po,n-1)(u, 51)

2 = #po,n-1](51,u)

)

#io,n—1](u, 50)
u

1
#10,n—1)(50, 1) 1

VoWV

2
2

Proof. By Lemma A.4 we have .(N — 1) = p.(N —1)"2(5.,AJ5.) > 0 and
hence 65, (N — 1) > 05,(N — 1). Thus, by (3.46) we have

#[O’N*I] (80781) = |_A80751 (N - 1)/7T—| - |—Aso,sl (O)/ﬂsl
=[(0s,(N — 1) — 05, (N —1))/7] > 0.

Moreover, by Theorem 6.4 we have
#io,v-1)(u, 51) = FFjo,v-1)(u, 80) + #[o,n-1)(50,51) =1 > 1

and #o,n—1](50,u) = #0,8-1](50,51) + F#o,n—17(51,u) =1 > 1. O

Lemma A.6. Fix somen > ng+ 2 and let € € [0,1] such that the Weyl m-
function
m2 (z,n+ 1) = O, (Hngni1(e) — 2) 7 6n) (A.17)

g,—

exists, that is, let sc(n+ 1) # 0, then

<§67 AI{no,n+1§:€>

d 0
—m2 1) = A.18
dgmg,—(z,n‘i‘ ) G,E(’I’L)QSE(Z,TL‘F 1)2 ( )
[T 00G)°
= — _’57 AHn n _’5 .
Aot (Hr i1 (0) 22 om18e)
>0
Proof. By (A.9) we have
n se(z,n) sin 0. (n)
0 1 o = =t 0
me(zn+1) —ac(n)se(z,n+1)  cosB.(n) an fe ()
and hence by Lemma A.4 we have
d d
o 1) = —
dsmg’f(z’ n+1) R tan 6. (n)
_ es(n) _ <§87AHTL0,71+1§8> _ <§87AHno,n+1§e>
cos20.(n)  pe(n)2cos?20.(n)  ac(n)?s.(z,n+1)2
Moreover by Lemma 5.1 we have s.(z,n+ 1) = det(Hng.n41(2)—2) O

j=ng+1 _ae(j) ’
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In [46] and [4] a slightly different transformation into Priifer variables has been

used, namely

u(n) = py(n)sinb, (n), (A.19)
u(n + 1) = py(n) cosf,(n).

Lemma A.7. Let ng = 0,n > 2, and let pc, 0. denote the Priifer variables from
(A.19), then

g (n) = (8e, AHg p+15:) + Aae(n)se(n)s:(n + 1) _ (sz,ATs?) (A.20)
c _as(n)ps(n)2 _as(n)pe(n)z
Proof. We have d%ain) = fjﬁl’;g, hence

$c(n+1) = pe(n) cosB-(n) — p(n) sin O (n)f.(n)

and

(pe(n) cos 0z (n) — s(n)b=(n)) — s(n + 1)(—Aa(n)sc(n)
e (n) sin 0 (n) + p-(n) cos 0-(n)0:(n)))

= sc(n+1)as(n)pe(n)sinf.(n) — se(n + 1ac(n)s:(n + 1)0-(n)
and thus

= s.(n)(ac(n)pe(n) cosB:(n) + Aa(n)s.(n+ 1)
— a=(n)pe(n) cosb-(n)) — as(n)ée(n)(ss(n)z +se(n+1)%)
= s:(n)Aa(n)s:(n+1) — as(n)ée(n)ps(n)Qa

and Lemma A.3 we have

<§EaAH0,n+1§6>
+ 2Aa(n)sc(n)s.(n + 1) = s.(n)Aa(n)s:(n + 1) — a(n)f:(n)pe(n)?

and hence 0.(n) = —((8., AHp n115:) + Aa(n)sc(n)s-(n + 1))a-(n) " p.(n)~2.
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Obviously, (A.20) is a generalization of (2.22) in [46], where AJ =T and

Do 5(5)?

bn) = e (n)?

(A.21)

holds and further, (A.20) agrees with (3.3) in [4], where we have Aa = 0 and

S AN ()

) = e p

(A.22)
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