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Abstract. We present a comprehensive treatment of relative oscillation the-

ory for finite Jacobi matrices. We show that the difference of the number of
eigenvalues of two Jacobi matrices in an interval equals the number of weighted

sign–changes of the Wronskian of suitable solutions of the two underlying dif-

ference equations. Until now only the case of perturbations of the main diago-
nal was known. We extend the known results to arbitrary perturbations, allow

any (half–)open and closed spectral intervals, simplify the proof, and establish

the comparison theorem.

1. Introduction

Jacobi operators appear at numerous occasions in mathematics as well as in physical
models. For example, they are intimately related to the theory of orthogonal poly-
nomials or constitute a simple one–band tight binding model in quantum mechanics.
They can be viewed as the discrete counterpart of Sturm–Liouville operators and
their investigation has many similarities with Sturm–Liouville theory. Moreover,
spectral and inverse spectral theory for Jacobi operators plays a fundamental role
in the investigation of the Toda lattice and its modified counterpart, the Kac–van
Moerbeke lattice. For a comprehensive introduction we refer to [18].
Let a, b ∈ `(Z) = {ϕ | ϕ : Z → R}, where a(n) < 0 holds for all n ∈ Z. Then, the
Jacobi matrix

J =



b(1) a(1) 0 0 0

a(1) b(2)
. . . 0 0

0
. . . 0

0 0
. . . b(N − 2) a(N − 2)

0 0 0 a(N − 2) b(N − 1)


(1.1)

is self–adjoint and σ(J) is real and simple. The corresponding Jacobi difference
equation is given by

τu = zu, (1.2)

where

τ : `(Z)→ `(Z)

u(n) 7→ (τu)(n) = a(n)u(n+ 1) + a(n− 1)u(n− 1) + b(n)u(n) (1.3)

= ∂(a(n− 1)∂u(n− 1)) + (b(n) + a(n) + a(n− 1))u(n),
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z ∈ R, and ∂u(n) = u(n+ 1)− u(n) is the usual forward difference operator.
We call u(z) a solution of (1.2) if (τ − z)u(z) = 0 and u(z) 6≡ 0. Whenever the
spectral parameter is evident from the context we abbreviate u = u(z). For any
two initial values u(n0), u(n0 + 1), n0 ∈ Z, there exists a unique ’solution’ u of
(1.2) which vanishes if and only if (u(n0), u(n0 + 1)) = (0, 0). We exclude this case
and thus, a solution of (1.2) cannot have two consecutive zeros. We call n a node
(sign–change) of u if

u(n) = 0 or a(n)u(n)u(n+ 1) > 0 (1.4)

and say that a node n of u lies between m and l if either m < n < l or if n = m
and u(m) 6= 0. The number of nodes of u between m and l is denoted as #(m,l)(u).
From classical oscillation theory originating in the seminal work of Sturm from
1836 [17] we know that the n–th eigenfunction of a Sturm–Liouville operator has
n − 1 nodes. This also holds for eigensequences of Jacobi operators, see [7, 8, 20]
and also [14]. Our aim now is to show that the number of nodes of the Wronskian
determinant of two (suitable) solutions uj(zj) of (τj − zj)uj = 0, j = 0, 1, equals
the difference of the number of eigenvalues of J0 and J1 in (z0, z1).
In [3] (confer also [2]) Teschl and myself considered the special case a0 = a1 which is
now generalized to arbitrary perturbations (see also [1]). We still assume a0, a1 < 0.
This is no restriction since altering the sign of one or more elements of a does
not affect the spectrum of the corresponding matrices, their similarity can easily
be shown. Nevertheless, the signs of the solutions of the underlying difference
equations depend on the signs of a and therefore we assume a < 0 to simplify (1.6),
confer also [1].
The Wronskian is given by W (u0, u1) ∈ `(Z), where

Wn(u0, u1) = u0(n)a1(n)u1(n+ 1)− u1(n)a0(n)u0(n+ 1). (1.5)

We set

#n(u0, u1) =



1 if Wn+1(u0, u1)u0(n+ 1)u1(n+ 1) > 0 and

either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0

−1 if Wn(u0, u1)u0(n+ 1)u1(n+ 1) > 0 and

either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0

0 otherwise

(1.6)

and say the Wonskian has a (weighted) node at n if #n(u0, u1) 6= 0. We denote the
number of weighted nodes of the Wronskian between m and n, m < n, by

#[m,n](u0, u1) =

n−1∑
j=m

#j(u0, u1) (1.7)

and set

#(m,n](u0, u1) = #[m,n](u0, u1)−

{
1 if Wm(u0, u1) = 0

0 otherwise,
(1.8)
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#[m,n)(u0, u1) = #[m,n](u0, u1) +

{
1 if Wn(u0, u1) = 0

0 otherwise,
(1.9)

and

#(m,n)(u0, u1) (1.10)

= #[m,n](u0, u1)−

{
1 if Wm(u0, u1) = 0

0 otherwise
+

{
1 if Wn(u0, u1) = 0

0 otherwise.

Here we slightly changed the notation compared to [3]: #(m,n) from [3] is now
denoted as #(m,n]. That (1.6) is a generalization of the counting method established
in [3, (1.8)], where ∆a = 0 holds, follows from (2.6), see also [1].
In the Sections 2–4 we prove our main theorem:

Theorem 1.1 (Relative Oscillation Theorem). Let EΩ(Jj), j = 0, 1, be the number
of eigenvalues of Jj in Ω ⊆ R and let uj,±(zj) be solutions of (τj−zj)u = 0 fulfilling
the right/left Dirichlet boundary condition of Jj, i.e. uj,+(zj , N) = uj,−(zj , 0) = 0.
If a0, a1 < 0, then,

E(−∞,z1)(J1)− E(−∞,z0](J0)

= #(0,N−1](u0,+(z0), u1,−(z1)) = #(0,N−1](u0,−(z0), u1,+(z1)) (1.11)

and

E(−∞,z1)(J1)− E(−∞,z0)(J0)

= #[0,N−1](u0,+(z0), u1,−(z1)) = #(0,N−1)(u0,−(z0), u1,+(z1)),

E(−∞,z1](J1)− E(−∞,z0](J0)

= #(0,N−1)(u0,+(z0), u1,−(z1)) = #[0,N−1](u0,−(z0), u1,+(z1)), (1.12)

E(−∞,z1](J1)− E(−∞,z0)(J0)

= #[0,N−1)(u0,+(z0), u1,−(z1)) = #[0,N−1)(u0,−(z0), u1,+(z1))

if we set a0(N − 1) = a1(N − 1) to compute uj,−(N).

To simplify the previous theorem we’ve set a0(N − 1) = a1(N − 1). This doesn’t
influence J and σ(J), but the value u−(N) depends on it. However, if we drop this
assumption, then we have to take the weight at N − 1 into account. We state that
case in Theorem 4.10. For a computation of u+(0) any negative values a0(0) and
a1(0) will do the job.
Equation (1.11) generalizes Theorem 1.2 from [3] to different a’s. In the continuous
case it has been established by Krüger and Teschl in [11]. For the case of Dirac
operators see Stadler and Teschl in [16] and for extensions to symplectic eigenvalue
problems see Elyseeva [4–6].
In the sequel (Sections 2–4) we prove Theorem 1.1 using the discrete Prüfer trans-
formation. Compared to [2, 3, 11, 12, 16] we also present a simplified proof which
eliminates the need to interpolate between operators. This is of particular impor-
tance in the present case, since a0 < a1 does not imply the corresponding relation for
the operators, which would make the interpolation step more difficult. In addition,
(1.12) is new. The proofs for regular Sturm–Liouville operators [11, Theorem 2.3]
(confer also [12]) and regular Dirac operators [16, Theorem 3.3] can be shortened
in the same manner and both theorems can be extended to (half–)open and closed
spectral intervals analogously to (1.12) (for the first case cf. also [19]).
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An extension of Sturm’s classical comparison theorem for nodes of solutions to
nodes of Wronskians is established in Section 5. We show that it holds analogously
to the continuous case [12] if a0 = a1, therefore confer also [2]. Moreover, we give
Sturm–type comparison theorems for arbitrary perturbations of Jacobi matrices,
where, unlike the case of Sturm–Liouville operators [11], we do not obtain a direct
dependence on the coefficients of the operators because a0 6 a1 doesn’t imply
J0 6 J1.
An extension of Theorem 1.1 to Jacobi operators on the half–line and on the line
is in preparation, see [1]. This will fill the gap that classical oscillation theory is
only applicable below the essential spectrum, while relative oscillation theory works
perfectly inside gaps of the essential spectrum. We hope that this will stimulate
further research, e.g. to find new relative oscillation criteria as in the continuous
case, see [9, 10].
We’d be remiss not to mention that several other extensions of relative oscillation
theory are thinkable, e.g. to CMV matrices. Only recently, Šimon Hilscher pointed
out in [15] that an extension to the case of Jacobi difference equations with a
nonlinear dependence on the spectral parameter would be of particular interest.

2. The Wronskian

At first we look at the Wronskian and its ’derivative’ (2.6) along the Z–axis.

Definition 2.1. We define the (modified) Wronskian (also referred to as Wronski
determinant or Casorati determinant) by

W : D2 × `(Z)2 → `(Z) (2.1)

(τ0, τ1, ϕ, ψ) 7→W τ0,τ1(ϕ,ψ),

where D denotes the space of difference equations, such that

W τ0,τ1
n (ϕ,ψ) = ϕ(n)a1(n)ψ(n+ 1)− ψ(n)a0(n)ϕ(n+ 1) (2.2)

=

∣∣∣∣ ϕ(n) ψ(n)
a0(n)ϕ(n+ 1) a1(n)ψ(n+ 1)

∣∣∣∣ .
We abbreviate ∆b = b0− b1, ∆a = a0−a1, and Wn(ϕ,ψ) = W τ0,τ1

n (ϕ,ψ) whenever
the corresponding difference equations are evident from the context. Clearly, if
a0 = a1 holds, then W equals the Wronskian from [3]. We have

W τ0,τ0(ϕ,ϕ) ≡ 0,

W τ0,τ1(ϕ,ψ) = −W τ1,τ0(ψ,ϕ),

W τ0,τ1(c ϕ, ψ) = W τ0,τ1(ϕ, c ψ) = c W τ0,τ1(ϕ,ψ), (2.3)

W τ0,τ1(ϕ+ ϕ̃, ψ) = W τ0,τ1(ϕ,ψ) +W τ0,τ1(ϕ̃, ψ),

W τ0,τ1(ϕ,ψ + ψ̃) = W τ0,τ1(ϕ,ψ) +W τ0,τ1(ϕ, ψ̃)

for all c ∈ R and ϕ, ϕ̃, ψ, ψ̃ ∈ `(Z).

Lemma 2.2. Green’s Formula. We find

m∑
j=n

(ϕ(τ1ψ)− ψ(τ0ϕ))(j) = Wm(ϕ,ψ)−Wn−1(ϕ,ψ) (2.4)
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−
m−1∑
j=n−1

∆a(j)(ϕ(j + 1)ψ(j) + ϕ(j)ψ(j + 1))−
m∑
j=n

∆b(j)ϕ(j)ψ(j).

Proof. Just a short calculation. �

Corollary 2.3. Let (τj − z)uj = 0, then

Wm(u0, u1)−Wn−1(u0, u1) (2.5)

=

m−1∑
j=n−1

∆a(j)(u0(j + 1)u1(j) + u0(j)u1(j + 1)) +

m∑
j=n

∆b(j)u0(j)u1(j)

and

Wn(u0, u1)−Wn−1(u0, u1) (2.6)

= ∆a(n− 1)(u0(n)u1(n− 1) + u0(n− 1)u1(n)) + ∆b(n)u0(n)u1(n).

If u and ũ solve τu = zu, then W (u, ũ) is constant (and vanishes if and only if u
and ũ are linearly dependent).

3. Prüfer Transformation

In Lemma 3.8 we’ll establish the connection between the spectra of two different
Jacobi matrices and the difference of the Prüfer angles of suitable solutions of
the corresponding Jacobi difference equations. Therefore, from now on let u be a
solution of τu = zu and let u−/+ moreover fulfill the left/right Dirichlet boundary
condition of J . In order to keep this presentation self–contained at first we recall a
few well–known findings which can e.g. be found in [18]:

Lemma 3.1. Confer [18]. The Jacobi matrix J has N − 1 real and simple eigen-
values. Moreover,

z ∈ σ(J) ⇐⇒ u−(z,N) = 0 ⇐⇒ u+(z, 0) = 0. (3.1)

Proof. Since J is Hermitian all eigenvalues are real: let z ∈ σ(J), Jv = zv and
‖v‖ = 1. Then z = 〈v, zv〉 = 〈v, Jv〉 = 〈Jv, v〉 = z. It can easily be seen that
every eigenvector u corresponding to z fullfills τu = zu and u(0) = 0. Hence, by
W0(u−(z), u) = 0, u−(z) and u are linearly dependent. �

Theorem 3.2. Confer [8], [18, Theorem 4.7]. For all z ∈ R

E(−∞,z)(J) = #(0,N)(u−(z)) = #(0,N)(u+(z)) (3.2)

holds.

Lemma 3.3. If u(n) = 0, then u(n− 1)u(n+ 1) < 0.

Proof. Since (1.2) is a three–term–recursion and u 6≡ 0, all zeros of u are simple
and

u(n+ 1) = −a(n)−1︸ ︷︷ ︸
>0

(a(n− 1)︸ ︷︷ ︸
<0

u(n− 1) + (b(n)− z)u(n)︸ ︷︷ ︸
=0

) 6= 0 (3.3)

holds. �
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By (u(n), u(n + 1)) 6= (0, 0) for all n ∈ Z we can introduce Prüfer variables: let
ρu, θu ∈ `(Z) denote sequences so that

u(n) = ρu(n) sin θu(n), (3.4)

−a(n)u(n+ 1) = ρu(n) cos θu(n),

and ρu(n) > 0 holds for all n ∈ Z. Choose θu(n0) ∈ (−π, π] at the initial position
n0 and assume

dθu(n)/πe 6 dθu(n+ 1)/πe 6 dθu(n)/πe+ 1 (3.5)

for all n ∈ Z, then both sequences are well–defined and unique. Here, x 7→ dxe =
min{n ∈ Z |n ≥ x} denotes the ceiling function, a left–continuous analog to the
well–known floor function x 7→ bxc = max{n ∈ Z |n ≤ x} which itself is a right–
continuous step function.
We follow [11] and use the slightly refined (compared to [3, 18, 20]) definition of
Prüfer variables by taking the secondary diagonals a into account. By −a > 0 this
will not influence the herein recalled claims on the nodes of solutions, but it will
simplify our calculations as soon as we look at the nodes of the Wronskian.

Lemma 3.4. Fix some n ∈ Z, then ∃ k ∈ Z such that θu(n) = kπ + γ and
θu(n+ 1) = kπ + Γ, where

γ ∈ (0,
π

2
], Γ ∈ (0, π] ⇐⇒ n is not a node of u, (3.6)

γ ∈ (
π

2
, π], Γ ∈ (π, 2π) ⇐⇒ n is a node of u (3.7)

holds. Moreover,

θu(n) = kπ +
π

2
⇐⇒ θu(n+ 1) = (k + 1)π. (3.8)

Proof. Abbreviate θ = θu. Choose k ∈ Z such that θ(n) = kπ+ γ, γ ∈ (0, π] holds.
By (3.5) we have Γ ∈ (0, 2π]. If u(n)u(n + 1) 6= 0, then sin γ cos γ > 0 iff n is not
a node of u and sin γ cos γ < 0 iff n is a node of u, hence (3.6) clearly holds for γ.
By sin Γ cos γ > 0 we have sin Γ > 0 iff n is not a node of u and sin Γ < 0 iff n is a
node of u, thus, (3.6) also holds for Γ.
Now, suppose we have u(n+ 1) = 0, then n is not a node of u and either Γ = π or
Γ = 2π holds. By Lemma 3.3 we have u(n)u(n + 2) < 0, hence sin θ(n) cos θ(n +
1) = (−1)k sin γ(−1)k cos Γ < 0. Thus, by cos Γ < 0, we have Γ = π. From
−a(n)u(n + 1) = ρ(n) cos θ(n) = 0 we conclude that (−1)k cos γ = 0, thus γ = π

2
and hence (3.6) and (3.8) hold. If u(n) = 0, then n is a node of u, γ = π, and (3.6)
holds by sin θ(n+ 1) cos θ(n) > 0, i.e. (−1)k sin Γ(−1)k cos γ > 0. �

Corollary 3.5. For all n ∈ Z we have

dθu(n+ 1)/πe =

{
dθu(n)/πe+ 1 if n is a node of u

dθu(n)/πe otherwise.
(3.9)

Now we are able to count nodes of solutions of the Jacobi difference equation using
Prüfer variables and the number of nodes in an interval (m,n) is given by

Theorem 3.6. Confer [20, Lemma 2.5]. We have

#(m,n)(u) = dθu(n)/πe − bθu(m)/πc − 1. (3.10)
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Proof. We use mathematical induction: let n = m+ 1, then if u(m) = 0, u(n) 6= 0
we have #(m,n)(u) = 0 and by Corollary 3.5

dθu(n)/πe = dθu(m+ 1)/πe = dθu(m)/π︸ ︷︷ ︸
∈Z

e+ 1 = bθu(m)/πc+ 1 (3.11)

holds. If u(m) 6= 0 holds, then by Corollary 3.5 we have

bθu(m)/π︸ ︷︷ ︸
/∈Z

c = dθu(m)/πe − 1 =

{
dθu(n)/πe − 2 if m is a node

dθu(n)/πe − 1 otherwise.
(3.12)

The inductive step follows again from Corollary 3.5. �

Let s−/+(z) denote the solution of τs = zs fulfilling

s−(z, 0) = 0, s−(z, 1) = 1, resp. s+(z,N) = 0, s+(z,N + 1) = 1 (3.13)

and let n0 denote the base point, i.e. n0 = 0, resp. n0 = N . Then, by s±(n0) = 0
we have sin θ±(n0) = 0 and by s±(n0 + 1) = 1 we have −a(n0)s±(n0 + 1) =
ρs(n0) cos θ±(n0) > 0, hence θ±(n0) = 0 holds by θ±(n0) ∈ (−π, π].

Corollary 3.7. We have

#(0,N)(s−) = dθs−(N)/πe − 1 and #(0,N)(s+) = −bθs+(0)/πc − 1. (3.14)

In the last step we now introduce the difference ∆ of two Prüfer angles on which
our subsequent considerations rely:

Lemma 3.8. We find

E(−∞,z1)(J1)− E(−∞,z0)(J0) (3.15)

= d∆s0,+(z0),s1,−(z1)(N)/πe − d∆s0,+(z0),s1,−(z1)(0)/πe
= b∆s0,−(z0),s1,+(z1)(N)/πc − b∆s0,−(z0),s1,+(z1)(0)/πc,

E(−∞,z1)(J1)− E(−∞,z0](J0) (3.16)

= d∆s0,±(z0),s1,∓(z1)(N)/πe − b∆s0,±(z0),s1,∓(z1)(0)/πc − 1,

E(−∞,z1](J1)− E(−∞,z0)(J0) (3.17)

= b∆s0,±(z0),s1,∓(z1)(N)/πc − d∆s0,±(z0),s1,∓(z1)(0)/πe+ 1, and

E(−∞,z1](J1)− E(−∞,z0](J0) (3.18)

= d∆s0,−(z0),s1,+(z1)(N)/πe − d∆s0,−(z0),s1,+(z1)(0)/πe
= b∆s0,+(z0),s1,−(z1)(N)/πc − b∆s0,+(z0),s1,−(z1)(0)/πc,

where ∆u,v = θv − θu ∈ `(Z).

Proof. Abbreviate sj,± = sj,±(zj). By Theorem 3.2, Corollary 3.7, and −dxe =
b−xc for all x ∈ R we have

E(−∞,z1)(J1)− E(−∞,z0)(J0) = #(0,N)(s1,−)−#(0,N)(s0,+) (3.19)

= dθs1,−(N)/πe − d−θs0,+(0)/πe = d∆s0,+,s1,−(N)/πe − d∆s0,+,s1,−(0)/πe
= −(E(−∞,z0)(J0)− E(−∞,z1)(J1)) = b∆s0,−,s1,+(N)/πc − b∆s0,−,s1,+(0)/πc.

By Lemma 3.1 and (3.4) we have

z0 ∈ σ(J0) ⇐⇒ ∆s0,−,s1,+(N)/π ∈ Z ⇐⇒ ∆s0,+,s1,−(0)/π ∈ Z, (3.20)

z1 ∈ σ(J1) ⇐⇒ ∆s0,+,s1,−(N)/π ∈ Z ⇐⇒ ∆s0,−,s1,+(0)/π ∈ Z (3.21)
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and hence

E(−∞,z1)(J1)− E(−∞,z0](J0) = d∆s0,±,s1,∓(N)/πe − b∆s0,±,s1,∓(0)/πc − 1 (3.22)

holds by

E(−∞,z1)(J1)− E(−∞,z0)(J0) (3.23)

= d∆s0,±,s1,∓(N)/πe − b∆s0,±,s1,∓(0)/πc −

{
1 if z0 /∈ σ(J0)

0 if z0 ∈ σ(J0).

The rest now follows analogously. �

4. Nodes of the Wronskian

It remains to investigate the sign–changes of W (u0, u1). We will express them
in terms of the difference ∆ of Prüfer angles of the involved solutions to finally
gain their connection to the difference of the spectra of the corresponding matrices
(which is Theorem 1.1) by Lemma 3.8.
Therefore let uj be solutions of τj − z, j = 0, 1, where ρj , θj ∈ `(Z) are their Prüfer
variables from (3.4). They correspond to the same spectral parameter z, which is
no restriction, since we can always replace b1 by b1 − (z1 − z0). We abbreviate

∆ = ∆u0,u1
= θ1 − θ0 ∈ `(Z) (4.1)

and adopt Lemma 4.1 and Lemma 4.2 from [3]:

Lemma 4.1. Confer [3]. Fix some n ∈ Z, then ∃ kj ∈ Z, j = 0, 1, such that

θj(n) = kjπ + γj , γj ∈ (0, π], (4.2)

θj(n+ 1) = kjπ + Γj , Γj ∈ (0, 2π), (4.3)

where

(1): either u0 and u1 have a node at n or both do not have a node at n, then

γ1 − γ0 ∈ (−π
2
,
π

2
) and Γ1 − Γ0 ∈ (−π, π). (4.4)

(2): u1 has no node at n, but u0 has a node at n, then

γ1 − γ0 ∈ (−π, 0) and Γ1 − Γ0 ∈ (−2π, 0). (4.5)

(3): u1 has a node at n, but u0 has no node at n, then

γ1 − γ0 ∈ (0, π) and Γ1 − Γ0 ∈ (0, 2π). (4.6)

Proof. Use Lemma 3.4. �

Lemma 4.2. Confer [3]. We have

d∆(n)/πe − 1 ≤ d∆(n+ 1)/πe ≤ d∆(n)/πe+ 1. (4.7)

Proof. Let k = k1 − k0, n ∈ Z. By Lemma 4.1 we have either

∆(n) ∈ (kπ − π

2
, kπ +

π

2
) and ∆(n+ 1) ∈ (kπ − π, kπ + π), (4.8)

∆(n) ∈ (kπ − π, kπ) and ∆(n+ 1) ∈ (kπ − 2π, kπ), or (4.9)

∆(n) ∈ (kπ, kπ + π) and ∆(n+ 1) ∈ (kπ, kπ + 2π). (4.10)

In each case the lemma holds. �
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Lemma 4.3. We have

Wn(u0, u1) = ρ0(n)ρ1(n) sin ∆(n), (4.11)

Wn(u0, u1)u0(n+ 1)u1(n+ 1) = p sin(γ1 − γ0) cos γ0 cos γ1, (4.12)

Wn+1(u0, u1)u0(n+ 1)u1(n+ 1) = p̃ sin(Γ1 − Γ0) cos γ0 cos γ1, (4.13)

where p, p̃ > 0.

Proof. Consider

Wn(u0, u1) = u0(n)a1(n)u1(n+ 1)− u1(n)a0(n)u0(n+ 1)

= ρ0(n)ρ1(n) sin(θ1(n)− θ0(n)) (4.14)

= ρ0(n)ρ1(n)(−1)k1−k0 sin(γ1(n)− γ0(n))

and set p = ρ0(n)2ρ1(n)2

a0(n)a1(n) and p̃ = ρ0(n)ρ1(n)ρ0(n+1)ρ1(n+1)
a0(n)a1(n) . �

Lemma 4.4. We have

u0(n+ 1) = u1(n+ 1) = 0 =⇒ Wn(u0, u1) = Wn+1(u0, u1) = 0, (4.15)

u0(n+ 1) = 0, u1(n+ 1) 6= 0 =⇒ Wn(u0, u1)Wn+1(u0, u1) > 0, (4.16)

u0(n+ 1) 6= 0, u1(n+ 1) = 0 =⇒ Wn(u0, u1)Wn+1(u0, u1) > 0. (4.17)

Proof. The first claim holds obviously. For the second claim just observe that by
Lemma 3.3

Wn(u0, u1)Wn+1(u0, u1) = −u0(n)u0(n+ 2)a0(n+ 1)a1(n)u1(n+ 1)2 > 0 (4.18)

holds if u0(n+ 1) = 0, u1(n+ 1) 6= 0 and

Wn(u0, u1)Wn+1(u0, u1) = −u1(n)u1(n+ 2)a0(n)a1(n+ 1)u0(n+ 1)2 > 0 (4.19)

holds if u0(n+ 1) 6= 0, u1(n+ 1) = 0. �

Corollary 4.5. If Wn(u0, u1)Wn+1(u0, u1) < 0 holds or if Wn(u0, u1) = 0 and
Wn+1(u0, u1) 6= 0 holds, or if Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0 holds, then

u0(n+ 1)u1(n+ 1) 6= 0 (4.20)

and moreover ∆a(n) 6= 0 or ∆b(n+ 1) 6= 0 holds.

To shorten notation we denote

(+1) if d∆(n+ 1)/πe = d∆(n)/πe+ 1, (4.21)

(0) if d∆(n+ 1)/πe = d∆(n)/πe, and (4.22)

(−1) if d∆(n+ 1)/πe = d∆(n)/πe − 1. (4.23)

Lemma 4.6. Let n ∈ Z, then

(+1) ⇐⇒ Wn+1(u0, u1)u0(n+ 1)u1(n+ 1) > 0 and

either Wn(u0, u1)Wn+1(u0, u1) < 0 (4.24)

or Wn(u0, u1) = 0,Wn+1(u0, u1) 6= 0,

(−1) ⇐⇒ Wn(u0, u1)u0(n+ 1)u1(n+ 1) > 0 and

either Wn(u0, u1)Wn+1(u0, u1) < 0 (4.25)

or Wn(u0, u1) 6= 0,Wn+1(u0, u1) = 0,

(0) ⇐⇒ otherwise. (4.26)
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Proof. If (+1), then we either have case (1) of Lemma 4.1 and γ1−γ0 ∈ (−π2 , 0],Γ1−
Γ0 ∈ (0, π) or we have case (3) of Lemma 4.1 and γ1−γ0 ∈ (0, π),Γ1−Γ0 ∈ (π, 2π).
Clearly, by (4.11), in either case we have

Wn(u0, u1)Wn+1(u0, u1) < 0 or Wn(u0, u1) = 0,Wn+1(u0, u1) 6= 0. (4.27)

Hence, by Corollary 4.5 we have u0(n+ 1)u1(n+ 1) 6= 0 and thus cos γ0 cos γ1 6= 0.
In case (1) of Lemma 4.1 we have sin(Γ1 − Γ0) > 0 and cos γ0 cos γ1 > 0 by
Lemma 3.4. Hence, by (4.13) Wn+1(u0, u1)u0(n + 1)u1(n + 1) > 0 holds. In case
(3) of Lemma 4.1 we have sin(Γ1 − Γ0) < 0 and cos γ0 cos γ1 < 0 by Lemma 3.4.
Hence, by (4.13)

Wn+1(u0, u1)u0(n+ 1)u1(n+ 1) > 0 (4.28)

holds.
If (−1), then we either have case (1) of Lemma 4.1 and γ1 − γ0 ∈ (0, π2 ),Γ1 − Γ0 ∈
(−π, 0] or we have case (2) of Lemma 4.1 and γ1−γ0 ∈ (−π, 0),Γ1−Γ0 ∈ (−2π,−π].
Clearly, by (4.11), in either case we have

Wn(u0, u1)Wn+1(u0, u1) < 0 or Wn(u0, u1) 6= 0,Wn+1(u0, u1) = 0. (4.29)

Hence, by Corollary 4.5 we have u0(n+1)u1(n+1) 6= 0 and thus cos γ0 cos γ1 6= 0. In
case (1) of Lemma 4.1 we have sin(γ1−γ0) > 0 and cos γ0 cos γ1 > 0 by Lemma 3.4.
Hence, by (4.12) Wn(u0, u1)u0(n+ 1)u1(n+ 1) > 0 holds. In case (2) of Lemma 4.1
we have sin(γ1 − γ0) < 0 and cos γ0 cos γ1 < 0 by Lemma 3.4. Hence, by (4.12)

Wn(u0, u1)u0(n+ 1)u1(n+ 1) > 0 (4.30)

holds.
On the other hand, if Wn(u0, u1)Wn+1(u0, u1) < 0 by (4.11) we have either (+1)
or (−1). If, use (4.12),

Wn(u0, u1)u0(n+ 1)u1(n+ 1) = p sin(γ1 − γ0) cos γ0 cos γ1 > 0, (4.31)

then we have either case (1) or case (2) of Lemma 4.1 and in each case we have (0)
or (−1). Hence,

Wn(u0, u1)Wn+1(u0, u1) < 0 and Wn(u0, u1)u0(n+ 1)u1(n+ 1) > 0 =⇒ (−1).

If, use (4.12),

Wn(u0, u1)u0(n+ 1)u1(n+ 1) = p sin(γ1 − γ0) cos γ0 cos γ1 < 0, (4.32)

then we have either case (1) or case (3) of Lemma 4.1 and in each case we have (0)
or (+1). Hence,

Wn(u0, u1)Wn+1(u0, u1) < 0 and Wn+1(u0, u1)u0(n+ 1)u1(n+ 1) > 0 =⇒ (+1).

If Wn(u0, u1) = 0,Wn+1(u0, u1) 6= 0, then we have case (1) of Lemma 4.1 and by
Corollary 4.5 we have cos γ0 cos γ1 > 0. Hence, if Wn+1(u0, u1)u0(n+1)u1(n+1) >
0, then (4.13) implies sin(Γ1−Γ0) > 0, thus, (+1) holds by case (1) of Lemma 4.1.
If Wn(u0, u1) 6= 0,Wn+1(u0, u1) = 0, then by Corollary 4.5 we have cos γ0 cos γ1 6=
0. If additionally Wn(u0, u1)u0(n+1)u1(n+1) > 0 holds, then by (4.12) cos γ0 cos γ1

and sin(γ1 − γ0) are of the same sign. Hence, we have case (1) of Lemma 4.1 and
(−1) or case (2) of Lemma 4.1 and (−1).
Thus, (4.24) and (4.25) hold and clearly by Lemma 4.2 we have (0) otherwise. �
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Remark 4.7. Consider (1.6), then

Wn(u0, u1)Wn+1(u0, u1) 6= 0 or Wn(u0, u1) = Wn+1(u0, u1) = 0 (4.33)

=⇒ #n(u0, u1) = −#n(u1, u0)

and

Wn(u0, u1)Wn+1(u0, u1) < 0 =⇒ #n(u0, u1) 6= 0

by Corollary 4.5. Moreover, if Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0 holds, then

u0(n) = 0 ⇐⇒ u1(n) = 0. (4.34)

From Lemma 4.6 we conclude

#n(u0, u1) = d∆(n+ 1)/πe − d∆(n)/πe, (4.35)

#[m,n](u0, u1) = d∆(n)/πe − d∆(m)/πe. (4.36)

Lemma 4.8. We have

#(m,n](u0, u1) = d∆(n)/πe − b∆(m)/πc − 1, (4.37)

#[m,n)(u0, u1) = b∆(n)/πc − d∆(m)/πe+ 1, and (4.38)

#(m,n)(u0, u1) = b∆(n)/πc − b∆(m)/πc. (4.39)

Proof. By (4.11) we have Wj(u0, u1) = 0 ⇐⇒ ∆(j)/π ∈ Z and hence by (4.36)

#(m,n](u0, u1) = d∆(n)/πe − d∆(m)/πe −

{
0 if Wm(u0, u1) 6= 0

1 if Wm(u0, u1) = 0
(4.40)

= d∆(n)/πe − b∆(m)/πc − 1 (4.41)

holds. The second and the third claim follow analogously. �

Lemma 4.9. We have

#[m,n](u0, u1) = −#(m,n)(u1, u0), #(m,n](u0, u1) = −#[m,n)(u1, u0). (4.42)

If Wm(u0, u1) 6= 0 and Wn(u0, u1) 6= 0, then

#[m,n](u0, u1) = −#[m,n](u1, u0). (4.43)

Proof. Use dxe = −b−xc and Lemma 4.8. �

Theorem 4.10. Let a0, a1 < 0, then,

E(−∞,z1)(J1)− E(−∞,z0](J0)

= #(0,N ](u0,+(z0), u1,−(z1)) = #(0,N ](u0,−(z0), u1,+(z1)) (4.44)

and

E(−∞,z1)(J1)− E(−∞,z0)(J0)

= #[0,N ](u0,+(z0), u1,−(z1)) = #(0,N)(u0,−(z0), u1,+(z1)),

E(−∞,z1](J1)− E(−∞,z0](J0)

= #(0,N)(u0,+(z0), u1,−(z1)) = #[0,N ](u0,−(z0), u1,+(z1)), (4.45)

E(−∞,z1](J1)− E(−∞,z0)(J0)

= #[0,N)(u0,+(z0), u1,−(z1)) = #[0,N)(u0,−(z0), u1,+(z1)),
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where uj,±(zj), j = 0, 1, are solutions fulfilling the right/left Dirichlet boundary
condition of Jj, i.e. uj,−(zj , 0) = uj,+(zj , N) = 0.

Proof. By Lemma 3.8 and Lemma 4.8 we have

E(−∞,z1)(J1)− E(−∞,z0](J0)

= d∆s0,±(z0),s1,∓(z1)(N)/πe − b∆s0,±(z0),s1,∓(z1)(0)/πc − 1 (4.46)

= #(0,N ](s0,±(z0), s1,∓(z1)) = #(0,N ](u0,±(z0), u1,∓(z1))

and the equations (4.45) can be shown analogously. �

Proof of Theorem 1.1. In Theorem 4.10 the solutions uj,±(zj), j = 0, 1, depend on
the coefficients aj(0) and aj(N−1) of τj , although Jj (and hence also σ(Jj)) doesn’t
depend on them. If a0(N − 1) = a1(N − 1), then by (2.6) we have

WN (u0,±(z0)), u1,∓(z1))−WN−1(u0,±(z0), u1,∓(z1)) (4.47)

= (b0(N)− z0 − b1(N) + z1)u0,±(z0, N)u1,∓(z1, N) = 0

and hence there’s no node at N − 1. �

We close the proof of our main theorem with the following

Remark 4.11. By Theorem 1.1 we have

#[0,N ](u0,±(z), u1,∓(z1)) = −#[0,N ](u1,±(z), u0,∓(z)), (4.48)

#[0,N ](u0,+(z), u3,−(z)) (4.49)

= #[0,N)(u0,+(z), u1,−(z)) + #[0,N ](u1,−(z), u2,+(z)) + #(0,N ](u2,+(z), u3,−(z))

and

#[0,N ](u0,−(z), u3,+(z)) (4.50)

= #(0,N ](u0,−(z), u1,+(z)) + #[0,N ](u1,+(z), u2,−(z)) + #[0,N)(u2,−(z), u3,+(z)).

5. Triangle Inequality and Comparison Theorem

In the last section we now establish the Triangle Inequality and the Comparison
Theorem for Wronskians which generalize Theorem 5.12 and Theorem 5.13 from [2]
to different a’s. Moreover, Theorem 5.3 generalizes and sharpens Theorem 5.11
from [2]. We refer also to [1].

Theorem 5.1 (Comparison Theorem for Wronskians I). Let J1 > J2, then,

#[0,N ](u0,±(z), u2,∓(z)) > #[0,N ](u0,±(z), u1,∓(z)), (5.1)

where #[0,N ] can be replaced by #(0,N ], #[0,N), or #(0,N).

Proof. Let σ(J1) = {z1, . . . , zN−1} and σ(J2) = {z̃1, . . . , z̃N−1}, then zi > z̃i for
all i by J1 > J2, confer [13, Theorem 8.7.1], and hence we have E(−∞,z)(J2) >
E(−∞,z)(J1). Thus, by Theorem 1.1

#[0,N ](u0,+(z), u2,−(z)) = E(−∞,z)(J2)− E(−∞,z)(J0) (5.2)

> E(−∞,z)(J1)− E(−∞,z)(J0) = #[0,N ](u0,+(z), u1,−(z)).

The rest follows analogously from E(−∞,z](J2) > E(−∞,z](J1) and Theorem 1.1. �
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Corollary 5.2. Let a0 = a1 = a2 and b0(j) > b1(j) > b2(j) for all j = 1, . . . , N−1.
If 0 and N − 1 are positive nodes of W (u0,±(z), u1,∓(z)), then W (u0,±(z), u2,∓(z))
has at least two positive nodes at 0, . . . , N − 1.

Theorem 5.3. Let m < n, then

|#[m,n](u0, u1)− (#(m,n)(u1)−#(m,n)(u0))| ≤ 1, (5.3)

where #[m,n] can be replaced by #(m,n] or #[m,n).

Proof. For all x, y ∈ R we have

0 ≤ dx− ye − (dxe − dye) ≤ 1 and − 1 ≤ bx− yc − (bxc − byc) ≤ 0. (5.4)

Hence, by (4.36), Theorem 3.6, and −dxe = b−xc we have

|#[m,n](u0, u1)− (#(m,n)(u1)−#(m,n)(u0))|
= |d(θ1(n)− θ0(n))/πe − (dθ1(n)/πe − dθ0(n)/πe) (5.5)

+ b(θ0(m)− θ1(m))/πc − (bθ0(m)/πc − bθ1(m)/πc)| 6 1.

Moreover, by Lemma 4.8 and Theorem 3.6 we have

#(m,n](u0, u1)− (#(m,n)(u1)−#(m,n)(u0))

= d∆(n)/πe − (dθ1(n)/πe − dθ0(n)/πe) (5.6)

− (b∆(m)/πc − (bθ1(m)/πc − bθ0(m)/πc))− 1

and

#[m,n)(u0, u1)− (#(m,n)(u1)−#(m,n)(u0))

= 1 + b(θ0(m)− θ1(m))/πc − (bθ0(m)/πc − bθ1(m)/πc) (5.7)

− (d(θ0(n)− θ1(n))/πe − (dθ0(n)/πe − dθ1(n)/πe)).
�

Theorem 5.4 (Triangle Inequality for Wronskians). We have

|#[m,n](u0, u2)− (#[m,n](u0, u1) + #[m,n](u1, u2))| ≤ 1, (5.8)

where #[m,n] can be replaced by #(m,n].

Proof. Abbreviate ∆i,j = ∆ui,uj , then ∆0,1 + ∆1,2 = ∆0,2. By (4.36) we have
#[m,n](u0, u2) = d∆0,2(n)/πe − d∆0,2(m)/πe, hence

#[m,n](u0, u1) + #[m,n](u1, u2) (5.9)

≤ d∆0,2(n)/πe+ 1− d∆0,2(m)/πe = #[m,n](u0, u2) + 1

and

#[m,n](u0, u1) + #[m,n](u1, u2) (5.10)

≥ d∆0,2(n)/πe − (d∆0,2(m)/πe+ 1) = #[m,n](u0, u2)− 1

holds by dx+ ye ≤ dxe+ dye ≤ dx+ ye+ 1 for all x, y ∈ R. Further, by Lemma 4.8
and bx+ yc − 1 6 bxc+ byc 6 bx+ yc we have

#(m,n](u0, u1) + #(m,n](u1, u2) (5.11)

6 d∆0,2(n)/πe − b∆0,2(m)/πc = #(m,n](u0, u2) + 1

and #(m,n](u0, u2) ≤ #(m,n](u0, u1) + #(m,n](u1, u2) + 1. �
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Theorem 5.5 (Comparison Theorem for Wronskians II). If either

A: Wj(u0, u1)u0(j + 1)u1(j + 1) 6 0 and Wj(u1, u2)u1(j + 1)u2(j + 1) 6 0
for all j = 0, . . . , N − 2 or

B: a0 = a1 = a2 and b0(j) > b1(j) > b2(j) for all j = 1, . . . N − 1

holds and 0 and N − 2 are (positive) nodes of W (u0, u1), then W (u0, u2) has at
least one positive node at 0, . . . , N − 2.

Proof. In either case we have #j(u0, u1) > 0 and #j(u1, u2) > 0 for all j =
0, . . . , N − 2 and hence from Theorem 5.4 we conclude

#[0,N−1](u0, u2) > #[0,N−1](u0, u1)︸ ︷︷ ︸
>2

+ #[0,N−1](u1, u2)︸ ︷︷ ︸
>0

−1. (5.12)

�

Acknowledgments. I wish to thank Gerald Teschl for several useful discussions.

References

[1] K. Ammann, Oscillation Theorems for Semi–Infinite and Infinite Jacobi Operators, PhD

Thesis, University of Vienna, in preparation.

[2] K. Ammann, Relative Oscillation Theory for Jacobi Operators, Diploma Thesis, Univer-
sity of Vienna, http://othes.univie.ac.at/2534, 2008.

[3] K. Ammann and G. Teschl, Relative Oscillation Theory for Jacobi Matrices, Proceed-

ings of the 14th International Conference on Difference Equations and Applications, M.
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