RELATIVE OSCILLATION THEORY FOR JACOBI MATRICES
EXTENDED

KERSTIN AMMANN

ABSTRACT. We present a comprehensive treatment of relative oscillation the-
ory for finite Jacobi matrices. We show that the difference of the number of
eigenvalues of two Jacobi matrices in an interval equals the number of weighted
sign—changes of the Wronskian of suitable solutions of the two underlying dif-
ference equations. Until now only the case of perturbations of the main diago-
nal was known. We extend the known results to arbitrary perturbations, allow
any (half-)open and closed spectral intervals, simplify the proof, and establish
the comparison theorem.

1. INTRODUCTION

Jacobi operators appear at numerous occasions in mathematics as well as in physical
models. For example, they are intimately related to the theory of orthogonal poly-
nomials or constitute a simple one-band tight binding model in quantum mechanics.
They can be viewed as the discrete counterpart of Sturm—Liouville operators and
their investigation has many similarities with Sturm—Liouville theory. Moreover,
spectral and inverse spectral theory for Jacobi operators plays a fundamental role
in the investigation of the Toda lattice and its modified counterpart, the Kac—van
Moerbeke lattice. For a comprehensive introduction we refer to [18].

Let a,b € £(Z) = {¢ | ¢ : Z — R}, where a(n) < 0 holds for all n € Z. Then, the
Jacobi matriz

b(1) a(l) 0 0 0
a(l) b2) - 0 0

I=1 o 0 (1.1)
0 0 . bN-2) a(N-2)

0 0 0 a(N-=-2) bN-1)

is self-adjoint and o(J) is real and simple. The corresponding Jacobi difference
equation is given by

TU = zu, (1.2)

where

T:U(Z) — 6(Z)

u(n) = (tu)(n) = a(n)u(n + 1) + a(n — Du(n — 1) + b(n)u(n) (1.3)

= d(a(n —1)0u(n — 1)) + (b(n) + a(n) + a(n — 1))u(n),

2010 Mathematics Subject Classification. Primary 39A21, 47B36; Secondary 34C10, 34L05.
Key words and phrases. Jacobi matrices, oscillation theory, Wronskian.
Research supported by the Austrian Science Fund (FWF) under Grant No. Y330.

1
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z € R, and du(n) = u(n + 1) — u(n) is the usual forward difference operator.

We call u(z) a solution of (1.2) if (1 — z)u(z) = 0 and u(z) # 0. Whenever the
spectral parameter is evident from the context we abbreviate u = u(z). For any
two initial values u(ng),u(no + 1),n9 € Z, there exists a unique ’solution’ u of
(1.2) which vanishes if and only if (u(ng),u(ng+ 1)) = (0,0). We exclude this case
and thus, a solution of (1.2) cannot have two consecutive zeros. We call n a node
(sign—change) of w if

u(n) =0 or a(n)u(n)uin+1)>0 (1.4)

and say that a node n of u lies between m and [ if either m < n <lorif n =m
and u(m) # 0. The number of nodes of u between m and [ is denoted as # , ;) (u).
From classical oscillation theory originating in the seminal work of Sturm from
1836 [17] we know that the n—th eigenfunction of a Sturm-Liouville operator has
n — 1 nodes. This also holds for eigensequences of Jacobi operators, see [7, 8, 20]
and also [14]. Our aim now is to show that the number of nodes of the Wronskian
determinant of two (suitable) solutions u;(z;) of (1; — z;)u; = 0, j = 0,1, equals
the difference of the number of eigenvalues of Jy and J; in (zo, 21).

In [3] (confer also [2]) Teschl and myself considered the special case ag = a; which is
now generalized to arbitrary perturbations (see also [1]). We still assume ag, a; < 0.
This is no restriction since altering the sign of one or more elements of a does
not affect the spectrum of the corresponding matrices, their similarity can easily
be shown. Nevertheless, the signs of the solutions of the underlying difference
equations depend on the signs of a and therefore we assume a < 0 to simplify (1.6),
confer also [1].

The Wronskian is given by W (ug, u1) € ¢(Z), where

Wi (ug, u1) = ug(n)ar(n)ur(n + 1) —ug(n)ag(n)ug(n + 1). (1.5)
We set
1 if Wi (uo, ur)uo(n + 1)ui(n+1) > 0 and
either W, (ug, u1) Wit (ug,u1) <0
or W, (ug,u1) =0 and Wy,41(ug,u1) # 0
H#Hn(uo,ur) = ¢ =1 if Wy (ug,u1)ug(n + uy(n+1) >0 and (1.6)

either W, (ug, u1) Wit (ug,u1) <0
or Wi, (up,u1) # 0 and W41 (ug,u1) =0

0 otherwise

and say the Wonskian has a (weighted) node at n if #,,(ug,u1) # 0. We denote the
number of weighted nodes of the Wronskian between m and n, m < n, by

n—1
H#mon) (U0, u1) = Z #;(uo, u1) (1.7)
j=m

and set

1 if Wm(uO,U1) =0

. (1.8)
0 otherwise,

#(m,n] (ug,u1) = #[m,n] (ug,u1) — {



RELATIVE OSCILLATION THEORY FOR JACOBI MATRICES EXTENDED 3

1 if Wy (ug,u1) =0
m,n ) = m,n s . 1.9
F#mn) (W0, U1) = F[m,n) (U0, u1) + {0 otherwise, (1.9)

and
#(m,n)(uoaul) (110)
1 if Wm(UO,Ul) =0 1 if Wn(UO,Ul) =0
= m,n ; - . + .

# . (10, 1) {O otherwise 0 otherwise.

Here we slightly changed the notation compared to [3]: # () from [3] is now

denoted as # y,,,)- That (1.6) is a generalization of the counting method established
in 3, (1.8)], where Aa = 0 holds, follows from (2.6), see also [1].
In the Sections 2—4 we prove our main theorem:

Theorem 1.1 (Relative Oscillation Theorem). Let Eq(J;), j = 0,1, be the number
of eigenvalues of J; in Q C R and let u; 1 (z;) be solutions of (1, —z;)u = 0 fulfilling
the right/left Dirichlet boundary condition of J;, i.e. u; +(z;, N) = u; _(z;,0) = 0.
If ag, a1 < 0, then,

E(*OO’Z1)(‘]1) - E(foo,zg](JO)
= #(o,n-1)(u0,+(20), u1,—(21)) = #(0,n—-1)(0,~ (20), u1,+(21)) (1.11)

and

E(*Oovzl)(‘]l) - E(*Ooazo)(JO)
= #j0,8—1)(v0,+(20), u1,— (21)) = F#(0,n—1) (w0, (20), u1,4 (1)),
B co,211(J1) = B(—co,20](Jo)
= #(0,8-1)(u0,+(20), u1,—(21)) = #10,8-1)(v0,— (20), u1,+ (1)), (1.12)
E(—Oovzl](‘]l) - E(—OO»ZO)(JO)
= #0,8-1) (0,1 (20),u1,—(21)) = #[0,n—1) (10, (20), u1,4(21))
if we set ag(N — 1) = a1(N — 1) to compute u; _(N).

To simplify the previous theorem we’ve set ag(N — 1) = a1(N — 1). This doesn’t
influence J and o(J), but the value u_(N) depends on it. However, if we drop this
assumption, then we have to take the weight at N — 1 into account. We state that
case in Theorem 4.10. For a computation of u(0) any negative values ag(0) and
a1(0) will do the job.

Equation (1.11) generalizes Theorem 1.2 from [3] to different a’s. In the continuous
case it has been established by Kriiger and Teschl in [I1]. For the case of Dirac
operators see Stadler and Teschl in [16] and for extensions to symplectic eigenvalue
problems see Elyseeva [1-(].

In the sequel (Sections 2—4) we prove Theorem 1.1 using the discrete Priifer trans-
formation. Compared to [2,3, 11,12, 16] we also present a simplified proof which
eliminates the need to interpolate between operators. This is of particular impor-
tance in the present case, since ag < a; does not imply the corresponding relation for
the operators, which would make the interpolation step more difficult. In addition,
(1.12) is new. The proofs for regular Sturm—Liouville operators [11, Theorem 2.3]
(confer also [12]) and regular Dirac operators [16, Theorem 3.3] can be shortened
in the same manner and both theorems can be extended to (half-)open and closed
spectral intervals analogously to (1.12) (for the first case cf. also [19]).
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An extension of Sturm’s classical comparison theorem for nodes of solutions to
nodes of Wronskians is established in Section 5. We show that it holds analogously
to the continuous case [12] if ag = a1, therefore confer also [2]. Moreover, we give
Sturm—type comparison theorems for arbitrary perturbations of Jacobi matrices,
where, unlike the case of Sturm-Liouville operators [11], we do not obtain a direct
dependence on the coefficients of the operators because ag < a; doesn’t imply
Jo < J1.

An extension of Theorem 1.1 to Jacobi operators on the half-line and on the line
is in preparation, see [1]. This will fill the gap that classical oscillation theory is
only applicable below the essential spectrum, while relative oscillation theory works
perfectly inside gaps of the essential spectrum. We hope that this will stimulate
further research, e.g. to find new relative oscillation criteria as in the continuous
case, see [9, 10].

We’d be remiss not to mention that several other extensions of relative oscillation
theory are thinkable, e.g. to CMV matrices. Only recently, Simon Hilscher pointed
out in [15] that an extension to the case of Jacobi difference equations with a
nonlinear dependence on the spectral parameter would be of particular interest.

2. THE WRONSKIAN

At first we look at the Wronskian and its 'derivative’ (2.6) along the Z-axis.

Definition 2.1. We define the (modified) Wronskian (also referred to as Wronski
determinant or Casorati determinant) by

W :D? x U(Z)* — ((Z) (2.1)
(7—07 T1, P, 1/}) = WTO,TI (905 1/})7

where D denotes the space of difference equations, such that

W™ (p,4) = p(n)ar (n)i(n + 1) = d(n)ao(m)p(n +1) (2:2)

p(n) Y(n)
ao(n)p(n+1) ar(n)p(n+1)|°

We abbreviate Ab = by — by, Aa = ag — a1, and Wy, (p, ) = W™ (p, 1) whenever
the corresponding difference equations are evident from the context. Clearly, if
ap = a; holds, then W equals the Wronskian from [3]. We have

W (g, ) =0,

W (g, ) = =W (3, p),
WO (e, ) = WO (p, ¢ ) = ¢ W (ip,9)), (2:3)

W™ (o + @, 1p) = W (@, ) + W (B, 9),
W™ (0,9 + ) = W™ (p,h) + W™ (p, 1))

for all ¢ € R and <p7¢,@/1,@/~1 € UZ).

~ ~ —~

Lemma 2.2. Green’s Formula. We find

m

> (1) = (109)) (4) = Win(0,80) = W1 (0, 0) (24)

j=n
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m—1

— > M) (el + DY) + e + 1)) Z b (j)-

7 —1

Proof. Just a short calculation. O

Corollary 2.3. Let (1, — z)u; =0, then

Wm(u()aul) - anl(umul) (25)
m—1
Z Aa(§)(uo(§ + Dur(j) + uo(j)u ZAb uo(f)u1(7)
Jj=n—1
and
Wi (uo, u1) — Wi—1(uo, u1) (2.6)

= Aa(n — 1)(uo(n)ur(n — 1) + up(n — Luq(n)) + Ab(n)ug(n)uq(n).

If w and @ solve Tu = zu, then W(u,a) is constant (and vanishes if and only if «
and @ are linearly dependent).

3. PRUFER TRANSFORMATION

In Lemma 3.8 we’ll establish the connection between the spectra of two different
Jacobi matrices and the difference of the Priifer angles of suitable solutions of
the corresponding Jacobi difference equations. Therefore, from now on let u be a
solution of 7u = zu and let u_,; moreover fulfill the left /right Dirichlet boundary
condition of J. In order to keep this presentation self-contained at first we recall a
few well-known findings which can e.g. be found in [18]:

Lemma 3.1. Confer [15]. The Jacobi matriz J has N — 1 real and simple eigen-
values. Moreover,

z€0(J) < u_(2,N)=0 < uy(2,0)=0. (3.1)

Proof. Since J is Hermitian all eigenvalues are real: let z € o(J), Jv = zv and
|lv] = 1. Then z = (v,2v) = (v,Jv) = (Jv,v) = Z. It can easily be seen that
every eigenvector u corresponding to z fullfills 74 = zu and w(0) = 0. Hence, by
Wo(u—_(2),u) =0, u_(z) and u are linearly dependent. O

Theorem 3.2. Confer [5], [18, Theorem 4.7]. For all z € R

E(—oo,2)(J) = #0,3) (u-(2)) = #0,n) (u+(2)) (32)
holds.
Lemma 3.3. Ifu(n) =0, then u(n — u(n+1) <O0.

Proof. Since (1.2) is a three—term-recursion and u # 0, all zeros of u are simple
and

u(n+1) = —a(n) " Ha(n — 1) u(n — 1) + (b(n) — 2)u(n)) #0 (3.3)
>0 <0 =0

holds. O
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By (u(n),u(n + 1)) # (0,0) for all n € Z we can introduce Priifer variables: let
Pus 0y € €(Z) denote sequences so that

u(n) = py(n)sinb,(n), (3.4)
—a(n)u(n + 1) = py(n) cosb,(n),

and p,(n) > 0 holds for all n € Z. Choose 6,(n¢) € (—m, ] at the initial position
ng and assume

[0u(n)/m] < [Ou(n+1)/m] < [0u(n)/m] +1 (3.5)

for all n € Z, then both sequences are well-defined and unique. Here, z — [2] =
min{n € Z|n > x} denotes the ceiling function, a left—continuous analog to the
well-known floor function « — |z| = max{n € Z|n < z} which itself is a right—
continuous step function.

We follow [11] and use the slightly refined (compared to [3, 18, 20]) definition of
Priifer variables by taking the secondary diagonals a into account. By —a > 0 this
will not influence the herein recalled claims on the nodes of solutions, but it will
simplify our calculations as soon as we look at the nodes of the Wronskian.

Lemma 3.4. Fiz some n € Z, then 3 k € Z such that 0,(n) = kr 4+~ and
Ou,(n+1)=kn + T, where

) g], I'e (0,71] <= n is not a node of u, (3.6)
vE (g,w], I'e (m27) <= nisanodeofu (3.7

v € (0

holds. Moreover,

0. (n) = kr + g — bOy(n+1)=(k+ )7 (3.8)
Proof. Abbreviate § = 6,,. Choose k € Z such that 8(n) = k7 +, v € (0, 7] holds.
By (3.5) we have T" € (0,2x]. If u(n)u(n + 1) # 0, then sinycosy > 0 iff n is not
a node of u and sin-ycos~y < 0 iff n is a node of u, hence (3.6) clearly holds for .
By sinT cos~y > 0 we have sinI" > 0 iff n is not a node of u and sinT" < 0 iff n is a
node of u, thus, (3.6) also holds for T.
Now, suppose we have u(n + 1) = 0, then n is not a node of v and either T' = 7 or
I' = 27 holds. By Lemma 3.3 we have u(n)u(n + 2) < 0, hence sin0(n) cos 6(n +
1) = (=1)*siny(—1)*cosT" < 0. Thus, by cosI' < 0, we have I' = 7. From
—a(n)u(n + 1) = p(n)cosf(n) = 0 we conclude that (—1)* cosy = 0, thus v = 2

2
and hence (3.6) and (3.8) hold. If u(n) = 0, then n is a node of u, v = 7, and (3.6)
holds by sin@(n + 1) cos6(n) > 0, i.e. (—1)¥sin(—1)* cosy > 0. O
Corollary 3.5. For alln € Z we have
[0,(n)/m]+1 ifn is a node of u
Ou(n+1 = 3.9
[uln +1)/7] {f@u(n)/ﬂ otherwise. (3.9)

Now we are able to count nodes of solutions of the Jacobi difference equation using
Priifer variables and the number of nodes in an interval (m,n) is given by

Theorem 3.6. Confer [20, Lemma 2.5]. We have
#(m.m) (W) = [Ou(n) /7] = [Ou(m) /7| — 1. (3.10)
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Proof. We use mathematical induction: let n = m + 1, then if u(m) = 0, u(n) # 0
we have # ,, n)(u) = 0 and by Corollary 3.5
[0u(n)/m] = [Ou(m +1)/7] = [0u(m)/7] +1 = [0u(m)/7] +1 (3.11)
——
ez
holds. If u(m) # 0 holds, then by Corollary 3.5 we have

[0u(n)/m] —2 if m is a node
0, = [0, —1= 3.12
LMJ [6u(m)/7] {[Qu (n)/m] —1 otherwise. (3.12)
&7
The inductive step follows again from Corollary 3.5. O

Let s_,1(2) denote the solution of 7s = zs fulfilling
$-(2,0)=0,s_(2,1) =1, resp. s4(2,N)=0,54(2,N+1)=1 (3.13)

and let ng denote the base point, i.e. ng = 0, resp. ngp = N. Then, by sy(ng) =0
we have sinfy(ng) = 0 and by si(ng + 1) = 1 we have —a(ng)s+(ng + 1) =
ps(no) cos B (ng) > 0, hence 64 (ng) = 0 holds by 6+(ng) € (—m, 7).

Corollary 3.7. We have
#on(s-) = [0s_(N)/m] =1 and  #on)(s+) =—[0: (0)/7] =1.  (3.14)

In the last step we now introduce the difference A of two Priifer angles on which
our subsequent considerations rely:

Lemma 3.8. We find
E(—o,21)(J1) = E(—o6,2)(Jo) (3.15)
= |—A80 +(20),81,—(21) ( )/7T—| - |— 50,+(20),851,— Zl)(o)/ﬂ--l
= LASO —(20),81,+(21) ( )/T‘-J - L 50,—(20),51,+( z1)(0)/7TJ

E(—o,20)(J1) = E(—o0,2] (Jo) (3.16)
= [Aso 2 (oo w (=) /7T = [Bg 1 ()1, (1) (0)/7] = 1,

E(—c0,21)(J1) = E(=o0,2)(Jo) (3.17)
= [As i (zo)vsr 5 (1) V)T = [Asg 4 (z0)ss1.5 (1) (0) /7] + 1, and

E(—c0,24)(J1) = E(—00,2] (Jo) (3.18)

= [Asy (20,514 (z0) V)T = [Asy _(z0)s1. 4 (21)(0) /7]

= Qs (200,81, (z0) (N) /7] = [Dsg  (20),1, - (21)(0) /7],
where Ay, =6, — 0, € {(Z).
Proof. Abbreviate sj + = s, +(2;). By Theorem 3.2, Corollary 3.7, and —[z] =
|—z] for all z € R we have

B oo21)(J1) = E(—00,20)(Jo) = #(0,n)(51,—) — #(0,3)(50,+) (3.19)
=05, (N)/m] = [=0s, . (0)/7] = [Aso 50 - (N)/7] = [Asy 1151, (0)/7]
~(E(—00,20)(J0) = E(—00,21)(J1)) = [Aso _ 51 o (N) /7] = [Agy _ 5, . (0)/7].

By Lemma 3.1 and (3.4) we have
zp€o(y) = Agq_a.N)/recZ <= Ay, s _(0)/mecZ, (3.20)
znn€o0(J1)) = A (N)/meZ <= Ay _s,0)/meZ (3.21)

50,451, —
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and hence

E(foo,m)(Jl) - E(foo,zo](JO) = |—A50,i751.;(N)/7T-| - LASO,i7S1,;(O)/7TJ -1 (3-22)
holds by

E(—s0.2)(J1) = E(—c0.z)(Jo) (3.23)
SRV EPRCTEES Pl aint

The rest now follows analogously. O

4. NODES OF THE WRONSKIAN

It remains to investigate the sign—changes of W (ug,u1). We will express them
in terms of the difference A of Priifer angles of the involved solutions to finally
gain their connection to the difference of the spectra of the corresponding matrices
(which is Theorem 1.1) by Lemma 3.8.

Therefore let u; be solutions of 7; — z,j = 0,1, where p;,0; € {(Z) are their Priifer
variables from (3.4). They correspond to the same spectral parameter z, which is
no restriction, since we can always replace by by by — (21 — z09). We abbreviate

A=Ayyu, =0 —0p€4(Z) (4.1)
and adopt Lemma 4.1 and Lemma 4.2 from [3]:
Lemma 4.1. Confer [5]. Fiz somen € Z, then 3 k; € Z,j = 0,1, such that
0;(n) = k;m+;, ;€ (0,7, (4.2)
Oj(n+1)=kjm+T;, T;e(0,2m),
where

(1): either ug and uy have a node at n or both do not have a node at n, then

Y — € (—g, g) and T1—T¢ € (—m, 7). (4.4)
(2): uy has no node at n, but ug has a node at n, then
71— € (—m,0) and Ty —Tye (—27,0). (4.5)
(3): uy has a node at n, but uy has no node at n, then
m—7 € (0,7) and Ty;—T¢€(0,27m). (4.6)
Proof. Use Lemma 3.4. O

Lemma 4.2. Confer [3]. We have
[A()/7] = 1< [A(n -+ 1)/7] < [A(m)/x] +1. (47)
Proof. Let k =k, — ko, n € Z. By Lemma 4.1 we have either

A(n) € (kr — g,kﬂ'-i-%) and A(n+1) € (kr — 7w kr+ ), (4.8)
A(n) € (kr —m, km) and A(n+1) € (km — 2w, kn), or (4.9)
A(n) € (km,kr + ) and A(n+1) € (kr, km + 2m). (4.10)

O

In each case the lemma holds.
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Lemma 4.3. We have

Wi (uo, u1) = po(n)p1(n)sin A(n), (4.11)
Wi (ug, u1)ug(n + 1)ug(n + 1) = psin(y1 — o) cosyp cos 71, (4.12)
W1 (ug, ur)ug(n + 1)ug(n+ 1) = psin(T'y — Tg) cosyo cosy1, (4.13)

where p,p > 0.
Proof. Consider
Wi (uo, u1) = ug(n)ai(n)ui(n + 1) — ui(n)ag(n)uo(n + 1)

= po(n)p1(n)sin(b(n) — bo(n)) (4.14)
= po(n)pr(n)(=1)*+ 7% sin(y1(n) — 70(n))
and set p = po(n)?p1(n)? and p = Po(”)m(”)ﬂo(”-ﬁ-l)m(n'i‘l) O

ao(n)ai(n) ao(n)ai(n)
Lemma 4.4. We have
wn+1)=ui(n+1) =0 = W, (ug,u1) = Wypr1(ug,u1) =0, (4.15)
up(n+1)=0,u1(n+1) #0 = W, (ug, u1)Wpi1(ug,ur) > 0, (4.16)
uo(n+1) #0,u1(n+1) =0 = W, (uo, ur) Wn1(uo, u1) > 0. (4.17)

Proof. The first claim holds obviously. For the second claim just observe that by
Lemma 3.3

W (o, w1 ) W1 (ug, ur) = —ug(n)ug(n + 2)ag(n + ai(n)ui(n +1)* >0 (4.18)
holds if ug(n + 1) = 0,uz(n+ 1) # 0 and

W (o, w1 ) W1 (ug, ur) = —uq (n)ur (n + 2)ag(n)ay (n + Dug(n +1)* > 0 (4.19)
holds if ug(n + 1) # 0,u;(n+1) = 0. O

Corollary 4.5. If W, (ug, u1)Way1(ug,u1) < 0 holds or if Wy (up,u1) = 0 and
Wht1(uo,u1) # 0 holds, or if Wy (ug,u1) # 0 and Wy41(ug, ur) = 0 holds, then

uo(n+ Dui(n+1)#0 (4.20)
and moreover Aa(n) # 0 or Ab(n+ 1) # 0 holds.

To shorten notation we denote

(+1) if [A(n+1)/7]=[An)/7]+1, (4.21)
(0) if [A(n+1)/m] =[A(n)/x], and (4.22)
(=1) if [AMn+1)/7]=[A(n)/7] -1 (4.23)

Lemma 4.6. Letn € Z, then
(+1) <= Wyy1(ug,u1)up(n + Duy(n+1) >0 and
either Wi, (ug, u1) W41 (ug,u1) <0 (4.24)
or Wy(ug,u1) =0, Wy41(ug,ur) #0,
(—1) <= W, (ug,u1)up(n+ Dui(n+1) >0 and
either Wi, (ug, u1) W41 (ug,u1) <0 (4.25)
or Wy(ug,u1) # 0, Wpi1(uo,u1) =0,
(0) <= otherwise. (4.26)
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g
Iy € (0,7) or we have case (3) of Lemma 4.1 and v; — o € (0,7),I'1 =T € (m,
Clearly, by (4.11), in either case we have

Wn(UQ,ul)Wn+1(Uo, ul) <0 or Wn(uo,ul) =0, Wn+1(U0, ul) # 0. (427)

Hence, by Corollary 4.5 we have ug(n + 1)ui(n + 1) # 0 and thus cos -~y cosy; # 0.
In case (1) of Lemma 4.1 we have sin(I'y — Ty) > 0 and cosygcosvy; > 0 by
Lemma 3.4. Hence, by (4.13) W,,1(ug, u1)ug(n 4+ 1)ui(n + 1) > 0 holds. In case
(3) of Lemma 4.1 we have sin(I'y —I'g) < 0 and cos~yycosy; < 0 by Lemma 3.4.
Hence, by (4.13)

Wn+1(u0,u1)u0(n + 1)U1(7’L + 1) >0 (428)
holds.
If (1), then we either have case (1) of Lemma 4.1 and 1 — o € (0, 5),I'1 —T'g €
(—mr, 0] or we have case (2) of Lemma 4.1 and v; —y9 € (—m,0),['1 =Ty € (=2, —7].
Clearly, by (4.11), in either case we have

Wn(uo, ul)Wn+1(u0, Ul) <0 or Wn(UO, Ul) 7é 0, WnJrl(uO, Ul) =0. (429)

Hence, by Corollary 4.5 we have ug(n+1)ui(n+1) # 0 and thus cosyg cosvy; # 0. In
case (1) of Lemma 4.1 we have sin(y; —70) > 0 and cos~yg cosy; > 0 by Lemma 3.4.
Hence, by (4.12) Wy, (ug, u1)ug(n+1)ui(n+1) > 0 holds. In case (2) of Lemma 4.1
we have sin(y; — 70) < 0 and cos~yg cosy; < 0 by Lemma 3.4. Hence, by (4.12)

Wn(’LLQ, ul)uo(n + 1)u1(n + ].) >0 (430)

holds.
On the other hand, if W), (ug, u1)Wy1(uo,u1) < 0 by (4.11) we have either (+1)
or (—1). If, use (4.12),

W (ug, ur)ug(n + Dug(n+ 1) = psin(y; — 7o) cosyo cosy1 > 0, (4.31)
then we have either case (1) or case (2) of Lemma 4.1 and in each case we have (0)
or (—1). Hence,

Wi (uo, w1 ) Wit (uo, 1) < 0 and Wi, (ug, ur)uo(n + Lur(n+1) >0 = (—1).

If, use (4.12),

Wi (ug, ur)uo(n 4+ 1)ui(n 4+ 1) = psin(y; — o) cosyp cosy1 < 0, (4.32)
then we have either case (1) or case (3) of Lemma 4.1 and in each case we have (0)
or (+1). Hence,
W, (ug, w1 ) Wit (ug, ur) < 0 and Wypq (ug, ur)ug(n + Dug(n+1) >0 = (+1).

If Wy (ug,u1) = 0, Wyt (ug, u1) # 0, then we have case (1) of Lemma 4.1 and by
Corollary 4.5 we have cosyg cosy; > 0. Hence, if W, 11 (ug, u1)ug(n+1)us(n+1) >
0, then (4.13) implies sin(I'y —y) > 0, thus, (+1) holds by case (1) of Lemma 4.1.
If W, (uo, u1) # 0, Wyt1(up, ur) = 0, then by Corollary 4.5 we have cosyg cosvy; #
0. If additionally W, (ug, u1)uo(n+1)us(n+1) > 0 holds, then by (4.12) cos g cos y1
and sin(vy; — 7o) are of the same sign. Hence, we have case (1) of Lemma 4.1 and
(—1) or case (2) of Lemma 4.1 and (—1).

Thus, (4.24) and (4.25) hold and clearly by Lemma 4.2 we have (0) otherwise. O
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Remark 4.7. Consider (1.6), then
Wi (o, ur)Wag1(uo,u1) #0  or Wi(ug,ur) = Whyi(ug,ur) =0 (4.33)
= #n(uo,u1) = —#n(u1, o)
and
Wi (uo, u1) Wiy (uo,u1) <0 = #p(uo,u1) #0
by Corollary 4.5. Moreover, if W, (ug,u1) =0 and Wy,41(ug,u1) # 0 holds, then

ug(n) =0 < wuy(n) =0. (4.34)
From Lemma 4.6 we conclude
#n(uo,u1) = [A(n+1)/7] — [A(n)/], (4.35)
#lmn) (U0, u1) = [A(n)/7] — [A(m)/]. (4.36)
Lemma 4.8. We have
#(mn)(v0,u1) = [A(n) /7] — [A(m)/7] =1 (4.37)
#imn) (o, u1) = [A(n) /7| — [A(m) /7] + 1, and (4.38)
# (m,n) (U0, 1) [A(n)/m| — [A(m)/x]. (4.39)
Proof. By (4.11) we have W;(up,u1) =0 <= A(j)/m € Z and hence by (4.36)
_ if W, U,()7 ul) #0
#(m,n] (UO, ’LLI) = |—A( )/7T~| { i Wi (g, 1) = 0 (4.40)
= [A(n)/7] = [A(m)/7] -1 (4.41)
holds. The second and the third claim follow analogously. O

Lemma 4.9. We have
#m,n) (1o, u1) = —#(m,n) (U1, uo), #(m.n) (ug,u1) = ~F#m,n) (ug,up). (4.42)
If Wi (uo,u1) # 0 and W, (ug,u1) # 0, then
F#imn) (W0, U1) = —F[m 0] (U1, Uo)- (4.43)
Proof. Use [2] = —|—x] and Lemma 4.8. O

Theorem 4.10. Let ag,a1 < 0, then,

E(—OO,Z1)(J1) - E(—oo,zo](JO)
= #0.8)(uo0,+(20), u1,—(21)) = #(0,n5](u0,— (20), u1,+(21)) (4.44)

and

E(o0,21)(J1) = E—o0,20)(J0)

= #0.8)(v0,+(20), u1,—(21)) = # (0,3 (u0,— (20), u1,+(21)),
E —o00 21](J1) E( 00,20] (JO)

= #0,n) (uo,4(20), u1,—(21)) = #o,n57(uo,— (20), u1,4 (21)), (4.45)
B w,z1(J1) = B(_c0,2)(J0)

= #10,n5)(w0,+(20), w1, (21)) = #{o,n5)(u0,— (20), u1,+(21)),
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where u; +(z;),7 = 0,1, are solutions fulfilling the right/left Dirichlet boundary
condition of J;, i.e. u; _(z;,0) = u; 1 (z;, N) =0.

Proof. By Lemma 3.8 and Lemma 4.8 we have
E(_oo7zl)(J1) - E(—oo,zo](J(])
= [Bs) 1 (z0)s1,5 (:0) (V)] = [Asy L (20,15 (2) (0)/7] =1 (4.46)
= #(0,n(50,(20), 81, (21)) = #(0,5)(v0,+(20), u1,%(21))

and the equations (4.45) can be shown analogously. (I

Proof of Theorem 1.1. In Theorem 4.10 the solutions u; +(z;),j = 0,1, depend on
the coefficients a;(0) and a,; (N —1) of 7;, although J; (and hence also o(J;)) doesn’t
depend on them. If ag(N — 1) = a1 (N — 1), then by (2.6) we have

Wi (uo,£(20))s u1,(21)) = Wn—1(uo,+(20), u1,%(21)) (4.47)
= (b()(N) —2z0 — bl(N) + Zl)’uO’i(Zo, N)uL:F(zl, N) =0
and hence there’s no node at N — 1. O

We close the proof of our main theorem with the following

Remark 4.11. By Theorem 1.1 we have

#io,n) (w0, £(2), u1,£(21)) = —#0,3) (u1,£(2), uo £(2)), (4.48)
#i0,8)(wo,+(2), u3,—(2)) (4.49)
= #0,8) (U0, +(2), u1,—(2)) + #o, vy (u1,— (2), u2,+(2)) + #(0,n (U2 4 (2), us - (2))
and
#10.5)(u0,—(2), us,+(2)) (4.50)

= #0871 (0, (2), u1,4(2)) + #jo,n) (w1, +(2), u2,— (2)) + #jo,n) (u2,— (2), uz 1 (2)).

5. TRIANGLE INEQUALITY AND COMPARISON THEOREM

In the last section we now establish the Triangle Inequality and the Comparison
Theorem for Wronskians which generalize Theorem 5.12 and Theorem 5.13 from [2]
to different a’s. Moreover, Theorem 5.3 generalizes and sharpens Theorem 5.11
from [2]. We refer also to [1].

Theorem 5.1 (Comparison Theorem for Wronskians I). Let J; > Ja, then,
#10,3] (w0, (2), u2,5(2)) 2 #o,n)(u0,£(2), u1,5(2)), (5.1)

where #(o,n) can be replaced by #o,N], #[o,N), OT #(0,N)-

Proof. Let o(J1) = {z1,...,2ny-1} and o(J2) = {Z1,...,Zny_1}, then z; > Z; for

all i by J; > Ja, confer [13, Theorem 8.7.1], and hence we have E(_ .)(J2) >
E(_,2(J1). Thus, by Theorem 1.1
0,8 (t0,+(2), u2,—(2)) = E(—oo,2)(J2) = E(—oo,2) (Jo) (5.2)

2 E(—o0.2) (1) = E(—c0,2) (Jo) = #10,n (0,4 (2), u1,—(2))-
The rest follows analogously from E_ .)(J2) = E(_o 2)(J1) and Theorem 1.1. O
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Corollary 5.2. Let ag = a1 = az and bo(j) = b1(j) = ba2(j) forallj=1,... ,N—1.
If0 and N —1 are positive nodes of W (ug,+(2), u1,+(2)), then W (ug +(2), u2,+(2))
has at least two positive nodes at 0,..., N — 1.

Theorem 5.3. Let m < n, then
[# {mn) (w0, w1) — (F#(mn) (U1) — F#(mon) (w0))] < 1, (5.3)
where #(m n) can be replaced by #(mn] 0T #imn)-
Proof. For all z,y € R we have
0<fz—y]—([z] - [y]) <1 and —1<|z—y|]—(lz]-[y])<0. (54)
Hence, by (4.36), Theorem 3.6, and —[z] = | —x] we have
|#[m,n] (u07 ul) - (#(m,n) (ul) - #(m,n) (UO))|
= [[(01(n) = bo(n))/m] = ([01(n)/x] = [6o(n)/]) (5.5)
+ L(6o(m) — 01(m)) /7] — ([6o(m)/7]| — [61(m)/7])| < 1.
Moreover, by Lemma 4.8 and Theorem 3.6 we have
F#(mon) (W0, u1) = (F(mun) (U1) — #(m.n) (o))
= [A(n)/7] = ([01(n)/m] = [6o(n)/m]) (5.6)
= (lA(m) /7] = ([61(m)/m]| = [00(m)/7])) —
and
#[m,n) (an ul) - (#(m,n) (ul) - #(m,n) (HO))
=14 [(0o(m) = 61(m))/7] = ([0o(m)/7| = |61(m)/x]) (5.7)
— ([(0o(n) = 01(n))/m] = ([00(n)/7] — [01(n)/7])).

Theorem 5.4 (Triangle Inequality for Wronskians). We have
|#[m,n] (UOa UQ) - (#[m,n] (UOa ul) + #[m,n] (ula U?))| <1 (58)
where #y, ) can be replaced by # (1 n)-

Proof. Abbreviate A; ; = Ay, u;, then Aoy 4+ A1 = Ago. By (4.36) we have
#[mn (ug, uz) = |—AO 2(n)/m] — (Ao 2(m)/7], hence

)
# (UOa )+ #[m n] (ulaUQ) (59)
< [Ag2(n)/m] +1 = [Ag2(m)/m] = #mn)(uo, uz) + 1

and

Fm,n) (U0, u1) + F#m ) (U1, uz) (5.10)
> [Ag2(n)/m] = ([Ao2(m)/m] +1) = #m (o, uz) — 1
holds by [z +y] < [z]+ [y] < [z +y] + 1 for all z,y € R. Further, by Lemma 4.8
and |z +y] — 1< |z] + |ly] < |z + y] we have
# (mn) (W05 U1) + F#(m,n] (U1, u2) (5.11)
< [Ag2(n)/m] — [Ao2(m) /7| = #(m.n)(uo, u2) +1
and # (m,n) (U0, U2) < #(m,n) (U0, u1) + F#(mon) (U1, u2) + 1. O
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Theorem 5.5 (Comparison Theorem for Wronskians II). If either
A: Wi(uo,u)uo(j + Dur(j +1) <0 and Wj(ur, ug)ui(j + Lua(j+1) <0

forallj=0,... N—2 or

B: ap = a1 =az and by(j) > b1(j) = ba2(j) forallj=1,...N -1
holds and 0 and N — 2 are (positive) nodes of W(ug,u1), then W(ug,uz) has at
least one positive node at 0,..., N — 2.

Proof. In either case we have #;(up,u1) > 0 and #;(ui,u2) > 0 for all j =

0,..., N — 2 and hence from Theorem 5.4 we conclude
#0,v—1) (w0, u2) = F0,n-1)(v0, u1) + #o,n—1)(u1, u2) —1. (5.12)
>2 >0

O
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