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Abstract

We develop relative oscillation theory for Jacobi matrices which, rather
than counting the number of eigenvalues of one single matrix, counts the dif-
ference between the number of eigenvalues of two different matrices. This is
done by replacing nodes of solutions associated with one matrix by weighted
nodes of Wronskians of solutions of two different matrices.
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1 Introduction

Oscillation theory for second-order differential and difference equations has a
long tradition originating in the seminal work of Sturm from 1836 [9]. Since then
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the subject is continuously growing and many monographs have been devoted
entirely to this subject. The most recent one being the monumental treatise by
Agarwal, Bohner, Grace, and O'Regan [1]. One of the key results of classical
oscillation theory is the fact, the k’th eigenfunction has precisely £ — 1 nodes
(i.e., sign flips) and for a suitably chosen solution of the underlying difference
equation, the number of nodes of this solutions equals the number of eigenvalues
below a given value. Our aim is add a new wrinkle to this classical result by
showing that the number of weighted nodes of the Wronskian (also known as
Casoratian) of two suitable solutions of two different Jacobi difference equations
can be used to count the difference between the number of eigenvalues of the two
associated Jacobi matrices.

That Wronskians are related to oscillation theory is indicated by an old paper
of Leighton [7], who noted that if two solutions have a non-vanishing Wronskian,
then their zeros must intertwine each other. However, it seems their real power
was realized only later by Gesztesy, Simon, and Teschl in [3] with the correspond-
ing extension to Jacobi operators given by Teschl [10]. For a pedagogical discus-
sion we refer to the survey by Simon [8]. That these results are just the tip of
the iceberg was discovered only recently by Kriiger and Teschl [4-6]. Our result
generalizes the main result for the case of Sturm-Liouville operators from [4] to
the case of Jacobi matrices.

To set the stage, let us fix some real numbers a(j) <0, b(j), 7 =1,--- ,N —1
and consider the Jacobi matrix

b(1) a(l) 0 0 0
a(l) b2) - 0 0
H=1 g . . .. 0 : (1.1)
0 0 a(N—1) bN—-2) a(N—2)
0 0 0 a(N —2) b(N —1)

in the Hilbert space CV~!. Furthermore, let s4(z,n) be the solutions of the under-
lying difference equation (set a(0) = a(N — 1) = a(N) = —1,b(N) = 0)

a(n)u(n+ 1)+ b(n)u(n) + a(n — Du(n — 1) = zu(n), n=1,...,N, (1.2)
corresponding to the initial conditions
s (2,0)=0,s_(z,1) =1, s+(2,N)=0,5:(2, N+ 1) =1. (1.3)

Note that s_(\,n) (resp. s; (A, n)) will be an eigenvector of H corresponding to
the eigenvalue A € R if and only if s_(\,N) = 0 (resp. s+ (A,0) = 0). We will
abbreviate s(z,n) = s_(z,n).
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We call n a node of a solution u of (1.2) if either
u(n) =0 or wu(n)u(n+1) <O. (1.4)
We say that a node n of u lies between m and n if either
m<mng<n or ny=mbutu(m)#O0. (1.5)

#(mmn)(u) denotes the number of nodes of u between m and n and #(u) =
#(OvN)<u>‘

Then we have the following classical result alluded to before (see e.g., [2,11]):

Theorem 1.1. Let H be a Jacobi matrix and s(z,n) a corresponding solution of the un-
derlying difference equation (1.2) corresponding to the initial condition s(z,0) = 0. Then
for every A € R the number of nodes of s(\,n) equals the number of eigenvalues of H
below \:

#(s(\) = #{E € o(H)|E < A}. (1.6)
Here o(H) denotes the spectrum of H, that is, the set of eigenvalues.

To generalize this result we will now consider two Jacobi matrices H, and
H, associated with the coefficients ay(n) = a;1(n) = a(n) and by(n) respectively
bi(n). The corresponding solutions will be denoted by s, 1 (n), j = 0, 1, in obvious
notation. Given two solutions u; of the difference equations associated with H;
we denote by

Wi (ug, u1) = a(n)(ug(n)ui(n + 1) — ug(n + 1)uy(n)) (1.7)

their Wronskian. As already anticipated we will relate the number of nodes of
such Wronskians to the difference between the eigenvalues of H, and H;. Since
this difference is a signed quantity, we will need to weight the nodes according
to the sign of the difference between H, and H; as follows: Set

if bo(n +1) —by(n+1) > 0and
, either Wn(UO, ul)Wn—H (U(), Ul) <0
or Wn(UO, ul) =0 and Wn+1(u0,u1) 7é 0,

#n(uo, u1) = if bo(n +1) — by (n+1) < 0and (1.8)
—1, either Wn<U0, ul)WnH(uo, Ul) <0
or Wn(uo, 'Lbl) 7£ 0 and WnJrl(uO’ ul) = O,

0, otherwise.
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Then we say the Wronskian has a weighted node at n if #,(ug,u1) # 0. The
weighted number of nodes of the Wronskian between 0 and N is denoted as

=

-1 .
#(u07u1) _ #j<u0’u1) . {07 lf WO(“O;“I) 7£ 07 (19)
1, if WO(UO, U1> =0.

I
o

J
With this notation our main result reads

Theorem 1.2. Let Hy, Hy be two Jacobi matrices with ag = ay and s; 4 (z,n) the corre-
sponding solutions of the underlying difference equations. Then for every Ao, \1 € R the
number of weighted nodes of W (so (o), $1.+(A\1)) equals the number of eigenvalues of
Hy below A\ minus the number of eigenvalues of Hy below or equal to \o:

#(50,—(Mo), 51,4 (A1) = #(50,4 (o), 51, (A1) =
=#{E € o(H,)|E < M} — #{E € o(Hp)|E < Ao} (1.10)

Here o(H) denotes the spectrum of H, that is, the set of eigenvalues.

The proof is based on Priifer angles to be investigated in Section 2. It will be
given in Section 3.

An extension to Jacobi operators on N respectively Z is in preparation.

2 Priifer angles

Since any nontrivial solution of (1.2) cannot vanish at two consecutive points
we can introduce Priifer variables (p,(n),8,(n)) in the usual way (cf., e.g., [11,
Chap. 4]) via

u(n) = py(n)sin(,(n)), u(n + 1) = pu(n) cos(f,(n)). (2.1)

Note that p,(n) > 0 for all n € Z and 6,,(n) is only defined up to an additive inte-
ger multiple of 27, depending on n. For our further investigations it is essential
to gain unique values for the Priifer angle and therefore we fix 6,,(0) and require

[0u(n)/m] < [0u(n +1)/7] < [0u(n)/7] +1, (2.2)

where [z] = min{n € Z|n > z} denotes the usual ceiling function. Then the
following easy result is well-known.
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Lemma 2.1. Define k, v, I" via

O.(n)=kr+~, O,(n+1)=kr+T, v€(0,n], ' € (0,2n], k€ Z. (2.3)

Then
0,Z] iff nis not a node,
e (0,3] iff nis not a node (2.4)
(5.7 iff nis a node,
and
e (0,7]  iff nis not a node, (2.5)
(m,2m) iff nis a node.
Moreover,
B, (n) =k + g o Bun+1)=(k+ D (2.6)
As a consequence we obtain
Corollary 2.2. We have
(Gu(n—i—l)] B (%)) 41 ifnis a node, 27)
T [ 9“75”) 1 otherwise. '
In particular, we obtain
0. (N 6.(0
ey = 2y 2Oy @8)

where |z]| = max{n € Z|n < x} is the usual floor function.

To find the analogous formula for the number of weighted nodes of a Wron-
skian we observe

Wn(u(b ul) = _a(n)pw) (n)pul (n) Sin(Auo,m (n))v (29)

where
Aumul (Tl) = e’U«l (n) - 9“0 (n) (210)

Furthermore, note
Wit (ug, wr) — Wi (ug, wr) = (bo(n + 1) — by (n+ 1))up(n + L)us(n +1).  (2.11)
As a straightforward consequence of Lemma 2.1 we obtain

Lemma 2.3. Fix some n and let §;(n) = k;m + ~; with v; € (0, 7] and 6;(n + 1) =
kjm +1; withT'; € (0,2n] for j = 0, 1. Then we have

Au07u1 (n) = (kl—kfo)ﬂ+’}/1—’yO and Au07U1 (n—|—1) = (k:l—ko)ﬁ+F1—F0, (212)

where
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(1) either ug and u, have a node at n or both do not have a node at n, then

mT
T — Y € (_5’ 5) and T —Tg € (—m,m). (2.13)

(2) wuy has no node at n, but uy has a node at n, then

M= € (—m,0) and Ty —T, € (—2x,0). (2.14)

(3) w; has a node at n, but uy has no node at n, then

1= € (0,7) and T;—T4€ (0,2n). (2.15)

Now we are able to show

Lemma 2.4. Fix some n. Then, if by(n + 1) > by(n + 1), we have
[Augun (1) /7] < [Ayguy (0 + 1) /7] < [Ayp oy (n) /7] + 1 (2.16)
and if bo(n + 1) < by (n + 1), we have
[Aupur (0)/7] =1 < [Auguy (0 + 1) /7] < [Dugu (n) /7] (2.17)

Proof. We will use the notation from Lemma 2.3 where we assume ky = k; = 0
without loss of generality. In particular, Lemma 2.3 implies

[Augus (n)/7T] =1 < [Ayguy (n+ 1) /7] < [Ayg o, (n)/7] + 1.

Hence, to show (2.16) there are two cases to exclude. Namely, (i) Ay, ., (n) €
(0, %), Aygus (n+1) € (=, 0] (from case (1)) and (ii) Ayyu, (n) € (—7,0), Ayguy (n+
1) € (—2m, —n] (from case (2)). But in case (i) we obtain a contradiction from
(2.11):

Wii1(uo, ur) = Wa(u, ur) + (bo(n + 1) = bi(n + 1)) ug(n + ur(n + 1) .

N J N S N 7 \\ S
-~ -~ -~

~
<0 >0 >0 >0

Similarly, in case (ii) equation (2.11) implies

W1 (ug, u) = Wi(ug,ur) + (bo(n 4+ 1) — by(n+ 1)) ug(n + 1)us(n + 1).

N J N S N 7 \\
-~ -~

vV vV
>0 <0 >0 <0

Equation (2.17) can be established in a similar fashion. O

Lemma 2.5. Let n € Z, then
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(1) Wn(’do, 'LL1) = Wn+1 (UO, 'LL1) =0or Wn(uo, Ul)Wn+1 (Uo, 'LL1) >0 1mplzes
Ay (1 + 1)-| _ [Auo,m (n)

™ s

[ 1. (2.18)

2) Wn(uo, Ul)Wn+1 (UQ, ul) <0 zmplzes

Bun @+ 1), [Rren ] g ifby(n+ 1) > bi(n+ 1), .19
m (20l 1 ifby(n + 1) < bi(n + 1).
(3) Wn(uo, U,l) = 0and Wn+1(uO, U,l) 7& 0 zmplzes
At l),  JEET L e )b
a [Ruoa ()] if bo(n+1) < by(n+1).
4) W, (uo,ur) # 0and W, 11 (ug,ur) = 0 implies
PCES VI i sl SR £ (CRE ELACEE
7r [Brenl™) 1 iy (n 4 1) < by(n + 1).

Note that in the cases (2)—(4) we necessarily have by(n + 1) # by(n + 1).

Proof. We will use the notation from Lemma 2.3 where we assume ky = k; = 0
without loss of generality. Moreover, interchanging vy and u; using A, ., =

—Ayus (n) and
e {m ifrez,

—[z] +1 otherwise,

we see that it suffices to show one case by(n+1) > by (n+1) or by(n+1) < by(n+1).

Suppose W, (ug, u1) = Wiyy1(ug,ur) = 0 and W, (ug, u1)Wyt1(uo, u1) > 0 do
not hold, then by (2.11) we have

Wi (ug, ur) — Wi (ug,ur) = (bo(n 4+ 1) — by(n+ 1)ug(n + Dug(n+1) #0

and hence by(n + 1) # bi(n + 1).
(1) and (2). Suppose W, (ug, u1) = Wyt1(uo, u1) = 0, then by (2.9) we infer

sin(Aygu, (n)) =sin(yr —v) =0,  sin(Ayy ., (n+1)) =sin(I’y —Ty) =0,

where v, 71 € (0,7]. Thus 7y = 7 and we have case (1) of Lemma 2.3 which
implies I'y — I'y € (—m, 7) and we conclude I'y — I'y = 0. In summary, A, ., (n) =
Aypuy (n+ 1) = 0 as claimed.
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Next suppose W, (uo, u1) W41 (ug, u1) # 0, then by (2.9) the sign of the Wron-
skian at n equals the sign of sin(A,, ., (7)) and hence (2.16) respectively (2.17)
finish the proof of case (1) and (2).

(3)- By (2.9) we conclude A, ., (n) =1 — 7 =0 mod 7, where v, 1 € (0,7

A

and thus v; — 79 = 0. So we have case (1) of Lemma 2.3 and hence A, ,,, (n + 1)
'y — Ty € (—m, ). That s,

[Augus (n)/m] < I-Au(hul(n +1)/7] < [AUO,ul(n)/W-I +1

and (2.17) finishes the proof of case (3) for by(n + 1) < by(n + 1).

(4). By (2.9) we have A, ,,(n +1) =T; — Ty = 0 mod 7 and Lemma 2.3
leaves us with the following possibilities

(a) Auo,m (n) ( % %) and AUOJM (7’L + 1) =0,
b) Ay, (n) € (—m,0) and Ay (n+1)=—m,
(© Ay (n) € (0,7) and Ay, (n+1)=m.
and (2.16) shows (4) if by(n + 1) > by(n + 1). O

As a consequence we obtain the desired formula

## (o, 1) = [Auguy (N) /7] = [ Ao (0) /] = 1. (2.22)

3 Proof of the main theorem

Our strategy will be to interpolate between H, and H, using H. = (1—¢)Hy+<cH;,
that is, a.(n) = a(n) and b.(n) = (1 — €)by(n) + €by(n). If u. is a solution of the
difference equation corresponding to H,, then the corresponding Priifer angles

satisfy

. B _VVn(u67 e )
= ) @1

where the dot denotes a derivative with respect to «.

Lemma 3.1. We have

= Yt (Bo(m) = bi(m)s. 4 (z,m),
2 =1 (bo(m) = by (m))se - (z,m)?.

Proof. Summing (2.11) we obtain

- Zm n+1(b0( ) - bl(m))sé‘,-l—(zv m)sé,-i—(zv m>’
> m—1(bo(m) — bi(m))sc (z,m)sz (2, m).
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Now use this to evaluate the limit

lim W, <8€7i(2>, se4(2) — Sé,i(z))

E—e E—£&

]

Denoting the Priifer angles of s. . (A, n) by 6. . (A, n), this result implies for
bo — b1 >0,

0.+ (\,n) = > mens1(bo(m) —bi(m))sc 4 (z,m)? _

6. (A n) = —2em=i (ol

> 0. (3.3)

Furthermore, we have the following result from classical perturbation theory.
We add a simple direct proof for convenience of the reader.

Lemma 3.2. Suppose by — by > 0 (resp. by — by < 0). Then the eigenvalues of H. are
analytic functions with respect to € and they are decreasing (resp. increasing).

Proof. First of all the Priifer angles 6. (), n) are analytic with respect to ¢ since
Se+(A,n) is a polynomial with respect to . Moreover, A € o(H.) is equivalent
to 6. +(A\,0) = 0 mod 7 (resp. 6. _(A\,N) = 0 mod 7) and monotonicity follows
from (3.3). O

In particular, this implies that P(H.) = #{E € o(H.)|E < A} is continuous
from below (resp. above) in € if by — by > 0 (resp. by — by < 0).

Now we are ready for the

Proof of Theorem 1.2. It suffices to prove the result for #(so 4+ (o), s1.—(A\1)), where
we can assume Ay = A\; = 0 without restriction and set s. . (n) = s.+(0,n) for
notational convenience. We split b, — b; according to

bo—bi=b, —b_,  byb_ >0,

and introduce the operator H_ = Hy, — b_. Then H_ is a negative perturbation of
Hjy and H, is a positive perturbation of H_.

Furthermore, define H. by

Hy +2¢(H_ — H,y), e€0,1/2],
Ho+2(=—1/2)(H, — H), =e[1/2,1].

H. =
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Let us look at (using (2.22))

Q(g) = #(50,+7 SE,*) = [AE(N)/TF—I - LAE(O)/WJ - 17 As(”) = A80,+,Sg,f (n)

and consider ¢ € [0, 1/2]. At the left boundary A.(0) remains constant whereas at
the right boundary A.(N) is increasing by (3.3). Moreover, it hits a multiple of =
whenever 0 € o(H.). So Q)(¢) is a piecewise constant function which is continuous
from below and jumps by one whenever 0 € o(H.). By Lemma 3.2 the same is
true for

P(e) = #{E € o(H.)|E < 0} — #{E € o(Hy)|E < 0}

and since we have Q(0) = P(0), we conclude Q(¢) = P(¢) forall e € [0,1/2]. To
see the remaining case ¢ = [1/2, 1], simply replace increasing by decreasing and
continuous from below by continuous from above. O
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