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Abstract

We develop relative oscillation theory for Jacobi matrices which, rather
than counting the number of eigenvalues of one single matrix, counts the dif-
ference between the number of eigenvalues of two different matrices. This is
done by replacing nodes of solutions associated with one matrix by weighted
nodes of Wronskians of solutions of two different matrices.
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1 Introduction

Oscillation theory for second-order differential and difference equations has a
long tradition originating in the seminal work of Sturm from 1836 [9]. Since then

∗Research supported by the Austrian Science Fund (FWF) under Grant No. Y330.

105



K. Ammann and G. Teschl

the subject is continuously growing and many monographs have been devoted
entirely to this subject. The most recent one being the monumental treatise by
Agarwal, Bohner, Grace, and O’Regan [1]. One of the key results of classical
oscillation theory is the fact, the k’th eigenfunction has precisely k − 1 nodes
(i.e., sign flips) and for a suitably chosen solution of the underlying difference
equation, the number of nodes of this solutions equals the number of eigenvalues
below a given value. Our aim is add a new wrinkle to this classical result by
showing that the number of weighted nodes of the Wronskian (also known as
Casoratian) of two suitable solutions of two different Jacobi difference equations
can be used to count the difference between the number of eigenvalues of the two
associated Jacobi matrices.

That Wronskians are related to oscillation theory is indicated by an old paper
of Leighton [7], who noted that if two solutions have a non-vanishing Wronskian,
then their zeros must intertwine each other. However, it seems their real power
was realized only later by Gesztesy, Simon, and Teschl in [3] with the correspond-
ing extension to Jacobi operators given by Teschl [10]. For a pedagogical discus-
sion we refer to the survey by Simon [8]. That these results are just the tip of
the iceberg was discovered only recently by Krüger and Teschl [4–6]. Our result
generalizes the main result for the case of Sturm–Liouville operators from [4] to
the case of Jacobi matrices.

To set the stage, let us fix some real numbers a(j) < 0, b(j), j = 1, · · · , N − 1

and consider the Jacobi matrix

H =



b(1) a(1) 0 0 0

a(1) b(2)
. . . 0 0

0
. . . . . . . . . 0

0 0 a(N − 1) b(N − 2) a(N − 2)

0 0 0 a(N − 2) b(N − 1)


. (1.1)

in the Hilbert space CN−1. Furthermore, let s±(z, n) be the solutions of the under-
lying difference equation (set a(0) = a(N − 1) = a(N) = −1, b(N) = 0)

a(n)u(n + 1) + b(n)u(n) + a(n− 1)u(n− 1) = zu(n), n = 1, . . . , N, (1.2)

corresponding to the initial conditions

s−(z, 0) = 0, s−(z, 1) = 1, s+(z, N) = 0, s+(z, N + 1) = 1. (1.3)

Note that s−(λ, n) (resp. s+(λ, n)) will be an eigenvector of H corresponding to
the eigenvalue λ ∈ R if and only if s−(λ, N) = 0 (resp. s+(λ, 0) = 0). We will
abbreviate s(z, n) = s−(z, n).
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We call n a node of a solution u of (1.2) if either

u(n) = 0 or u(n)u(n + 1) < 0. (1.4)

We say that a node n0 of u lies between m and n if either

m < n0 < n or n0 = m but u(m) 6= 0. (1.5)

#(m,n)(u) denotes the number of nodes of u between m and n and #(u) =

#(0,N)(u).

Then we have the following classical result alluded to before (see e.g., [2,11]):

Theorem 1.1. Let H be a Jacobi matrix and s(z, n) a corresponding solution of the un-
derlying difference equation (1.2) corresponding to the initial condition s(z, 0) = 0. Then
for every λ ∈ R the number of nodes of s(λ, n) equals the number of eigenvalues of H

below λ:
#(s(λ)) = #{E ∈ σ(H)|E < λ}. (1.6)

Here σ(H) denotes the spectrum of H , that is, the set of eigenvalues.

To generalize this result we will now consider two Jacobi matrices H0 and
H1 associated with the coefficients a0(n) = a1(n) ≡ a(n) and b0(n) respectively
b1(n). The corresponding solutions will be denoted by sj,±(n), j = 0, 1, in obvious
notation. Given two solutions uj of the difference equations associated with Hj

we denote by

Wn(u0, u1) = a(n)(u0(n)u1(n + 1)− u0(n + 1)u1(n)) (1.7)

their Wronskian. As already anticipated we will relate the number of nodes of
such Wronskians to the difference between the eigenvalues of H0 and H1. Since
this difference is a signed quantity, we will need to weight the nodes according
to the sign of the difference between H0 and H1 as follows: Set

#n(u0, u1) =



if b0(n + 1)− b1(n + 1) > 0 and

1, either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0,

if b0(n + 1)− b1(n + 1) < 0 and

−1, either Wn(u0, u1)Wn+1(u0, u1) < 0

or Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0,

0, otherwise.

(1.8)
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Then we say the Wronskian has a weighted node at n if #n(u0, u1) 6= 0. The
weighted number of nodes of the Wronskian between 0 and N is denoted as

#(u0, u1) =
N−1∑
j=0

#j(u0, u1)−

0, if W0(u0, u1) 6= 0,

1, if W0(u0, u1) = 0.
(1.9)

With this notation our main result reads

Theorem 1.2. Let H0, H1 be two Jacobi matrices with a0 = a1 and sj,±(z, n) the corre-
sponding solutions of the underlying difference equations. Then for every λ0, λ1 ∈ R the
number of weighted nodes of W (s0,−(λ0), s1,+(λ1)) equals the number of eigenvalues of
H1 below λ1 minus the number of eigenvalues of H0 below or equal to λ0:

#(s0,−(λ0), s1,+(λ1)) = #(s0,+(λ0), s1,−(λ1)) =

= #{E ∈ σ(H1)|E < λ1} −#{E ∈ σ(H0)|E ≤ λ0}. (1.10)

Here σ(H) denotes the spectrum of H , that is, the set of eigenvalues.

The proof is based on Prüfer angles to be investigated in Section 2. It will be
given in Section 3.

An extension to Jacobi operators on N respectively Z is in preparation.

2 Prüfer angles

Since any nontrivial solution of (1.2) cannot vanish at two consecutive points
we can introduce Prüfer variables (ρu(n), θu(n)) in the usual way (cf., e.g., [11,
Chap. 4]) via

u(n) = ρu(n) sin(θu(n)), u(n + 1) = ρu(n) cos(θu(n)). (2.1)

Note that ρu(n) > 0 for all n ∈ Z and θu(n) is only defined up to an additive inte-
ger multiple of 2π, depending on n. For our further investigations it is essential
to gain unique values for the Prüfer angle and therefore we fix θu(0) and require

dθu(n)/πe ≤ dθu(n + 1)/πe ≤ dθu(n)/πe+ 1, (2.2)

where dxe = min{n ∈ Z |n ≥ x} denotes the usual ceiling function. Then the
following easy result is well-known.
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Lemma 2.1. Define k, γ, Γ via

θu(n) = kπ + γ, θu(n + 1) = kπ + Γ, γ ∈ (0, π], Γ ∈ (0, 2π], k ∈ Z. (2.3)

Then

γ ∈

(0, π
2
] iff n is not a node,

(π
2
, π] iff n is a node,

(2.4)

and

Γ ∈

(0, π] iff n is not a node,

(π, 2π) iff n is a node.
(2.5)

Moreover,
θu(n) = kπ +

π

2
⇔ θu(n + 1) = (k + 1)π. (2.6)

As a consequence we obtain

Corollary 2.2. We have

dθu(n + 1)

π
e =

d θu(n)
π
e+ 1 if n is a node,

d θu(n)
π
e otherwise.

(2.7)

In particular, we obtain

#(u) = dθu(N)

π
e − bθu(0)

π
c − 1, (2.8)

where bxc = max{n ∈ Z |n ≤ x} is the usual floor function.

To find the analogous formula for the number of weighted nodes of a Wron-
skian we observe

Wn(u0, u1) = −a(n)ρu0(n)ρu1(n) sin(∆u0,u1(n)), (2.9)

where
∆u0,u1(n) = θu1(n)− θu0(n). (2.10)

Furthermore, note

Wn+1(u0, u1)−Wn(u0, u1) = (b0(n + 1)− b1(n + 1))u0(n + 1)u1(n + 1). (2.11)

As a straightforward consequence of Lemma 2.1 we obtain

Lemma 2.3. Fix some n and let θj(n) = kjπ + γj with γj ∈ (0, π] and θj(n + 1) =

kjπ + Γj with Γj ∈ (0, 2π] for j = 0, 1. Then we have

∆u0,u1(n) = (k1−k0)π+γ1−γ0 and ∆u0,u1(n+1) = (k1−k0)π+Γ1−Γ0, (2.12)

where
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(1) either u0 and u1 have a node at n or both do not have a node at n, then

γ1 − γ0 ∈ (−π

2
,
π

2
) and Γ1 − Γ0 ∈ (−π, π). (2.13)

(2) u1 has no node at n, but u0 has a node at n, then

γ1 − γ0 ∈ (−π, 0) and Γ1 − Γ0 ∈ (−2π, 0). (2.14)

(3) u1 has a node at n, but u0 has no node at n, then

γ1 − γ0 ∈ (0, π) and Γ1 − Γ0 ∈ (0, 2π). (2.15)

Now we are able to show

Lemma 2.4. Fix some n. Then, if b0(n + 1) ≥ b1(n + 1), we have

d∆u0,u1(n)/πe ≤ d∆u0,u1(n + 1)/πe ≤ d∆u0,u1(n)/πe+ 1 (2.16)

and if b0(n + 1) ≤ b1(n + 1), we have

d∆u0,u1(n)/πe − 1 ≤ d∆u0,u1(n + 1)/πe ≤ d∆u0,u1(n)/πe. (2.17)

Proof. We will use the notation from Lemma 2.3 where we assume k0 = k1 = 0

without loss of generality. In particular, Lemma 2.3 implies

d∆u0,u1(n)/πe − 1 ≤ d∆u0,u1(n + 1)/πe ≤ d∆u0,u1(n)/πe+ 1.

Hence, to show (2.16) there are two cases to exclude. Namely, (i) ∆u0,u1(n) ∈
(0, π

2
), ∆u0,u1(n+1) ∈ (−π, 0] (from case (1)) and (ii) ∆u0,u1(n) ∈ (−π, 0), ∆u0,u1(n+

1) ∈ (−2π,−π] (from case (2)). But in case (i) we obtain a contradiction from
(2.11):

Wn+1(u0, u1)︸ ︷︷ ︸
≤0

= Wn(u0, u1)︸ ︷︷ ︸
>0

+ (b0(n + 1)− b1(n + 1))︸ ︷︷ ︸
≥0

u0(n + 1)u1(n + 1)︸ ︷︷ ︸
≥0

.

Similarly, in case (ii) equation (2.11) implies

Wn+1(u0, u1)︸ ︷︷ ︸
≥0

= Wn(u0, u1)︸ ︷︷ ︸
<0

+ (b0(n + 1)− b1(n + 1))︸ ︷︷ ︸
≥0

u0(n + 1)u1(n + 1)︸ ︷︷ ︸
≤0

.

Equation (2.17) can be established in a similar fashion.

Lemma 2.5. Let n ∈ Z, then
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(1) Wn(u0, u1) = Wn+1(u0, u1) = 0 or Wn(u0, u1)Wn+1(u0, u1) > 0 implies

d∆u0,u1(n + 1)

π
e = d∆u0,u1(n)

π
e. (2.18)

(2) Wn(u0, u1)Wn+1(u0, u1) < 0 implies

d∆u0,u1(n + 1)

π
e =

d∆u0,u1 (n)

π
e+ 1, if b0(n + 1) > b1(n + 1),

d∆u0,u1 (n)

π
e − 1, if b0(n + 1) < b1(n + 1).

(2.19)

(3) Wn(u0, u1) = 0 and Wn+1(u0, u1) 6= 0 implies

d∆u0,u1(n + 1)

π
e =

d∆u0,u1 (n)

π
e+ 1, if b0(n + 1) > b1(n + 1),

d∆u0,u1 (n)

π
e, if b0(n + 1) < b1(n + 1).

(2.20)

(4) Wn(u0, u1) 6= 0 and Wn+1(u0, u1) = 0 implies

d∆u0,u1(n + 1)

π
e =

d∆u0,u1 (n)

π
e, if b0(n + 1) > b1(n + 1),

d∆u0,u1 (n)

π
e − 1, if b0(n + 1) < b1(n + 1).

(2.21)

Note that in the cases (2)–(4) we necessarily have b0(n + 1) 6= b1(n + 1).

Proof. We will use the notation from Lemma 2.3 where we assume k0 = k1 = 0

without loss of generality. Moreover, interchanging u0 and u1 using ∆u1,u0 =

−∆u0,u1(n) and

d−xe =

−dxe if x ∈ Z,

−dxe+ 1 otherwise,

we see that it suffices to show one case b0(n+1) ≥ b1(n+1) or b0(n+1) ≤ b1(n+1).

Suppose Wn(u0, u1) = Wn+1(u0, u1) = 0 and Wn(u0, u1)Wn+1(u0, u1) > 0 do
not hold, then by (2.11) we have

Wn+1(u0, u1)−Wn(u0, u1) = (b0(n + 1)− b1(n + 1))u0(n + 1)u1(n + 1) 6= 0

and hence b0(n + 1) 6= b1(n + 1).

(1) and (2). Suppose Wn(u0, u1) = Wn+1(u0, u1) = 0, then by (2.9) we infer

sin(∆u0,u1(n)) = sin(γ1 − γ0) = 0, sin(∆u0,u1(n + 1)) = sin(Γ1 − Γ0) = 0,

where γ0, γ1 ∈ (0, π]. Thus γ0 = γ1 and we have case (1) of Lemma 2.3 which
implies Γ1 − Γ0 ∈ (−π, π) and we conclude Γ1 − Γ0 = 0. In summary, ∆u0,u1(n) =

∆u0,u1(n + 1) = 0 as claimed.
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Next suppose Wn(u0, u1)Wn+1(u0, u1) 6= 0, then by (2.9) the sign of the Wron-
skian at n equals the sign of sin(∆u0,u1(n)) and hence (2.16) respectively (2.17)
finish the proof of case (1) and (2).

(3). By (2.9) we conclude ∆u0,u1(n) = γ1 − γ0 ≡ 0 mod π, where γ0, γ1 ∈ (0, π]

and thus γ1 − γ0 = 0. So we have case (1) of Lemma 2.3 and hence ∆u0,u1(n + 1) =

Γ1 − Γ0 ∈ (−π, π). That is,

d∆u0,u1(n)/πe ≤ d∆u0,u1(n + 1)/πe ≤ d∆u0,u1(n)/πe+ 1

and (2.17) finishes the proof of case (3) for b0(n + 1) < b1(n + 1).

(4). By (2.9) we have ∆u0,u1(n + 1) = Γ1 − Γ0 ≡ 0 mod π and Lemma 2.3
leaves us with the following possibilities

(a) ∆u0,u1(n) ∈ (−π
2
, π

2
) and ∆u0,u1(n + 1) = 0,

(b) ∆u0,u1(n) ∈ (−π, 0) and ∆u0,u1(n + 1) = −π,

(c) ∆u0,u1(n) ∈ (0, π) and ∆u0,u1(n + 1) = π.

and (2.16) shows (4) if b0(n + 1) > b1(n + 1).

As a consequence we obtain the desired formula

#(u0, u1) = d∆u0,u1(N)/πe − b∆u0,u1(0)/πc − 1. (2.22)

3 Proof of the main theorem

Our strategy will be to interpolate between H0 and H1 using Hε = (1−ε)H0+εH1,
that is, aε(n) = a(n) and bε(n) = (1 − ε)b0(n) + εb1(n). If uε is a solution of the
difference equation corresponding to Hε, then the corresponding Prüfer angles
satisfy

θ̇ε(n) = −Wn(uε, u̇ε)

a(n)ρ2
ε(n)

, (3.1)

where the dot denotes a derivative with respect to ε.

Lemma 3.1. We have

Wn(sε,±(z), ṡε,±(z)) =

−
∑N

m=n+1(b0(m)− b1(m))sε,+(z, m)2,∑n
m=1(b0(m)− b1(m))sε,−(z, m)2.

(3.2)

Proof. Summing (2.11) we obtain

Wn(sε,±(z), sε̃,±(z)) = (ε̃− ε)

−
∑N

m=n+1(b0(m)− b1(m))sε,+(z, m)sε̃,+(z, m),∑n
m=1(b0(m)− b1(m))sε,−(z, m)sε̃,−(z, m).
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Now use this to evaluate the limit

lim
ε̃→ε

Wn

(
sε,±(z),

sε,±(z)− sε̃,±(z)

ε− ε̃

)
.

Denoting the Prüfer angles of sε,±(λ, n) by θε,±(λ, n), this result implies for
b0 − b1 ≥ 0,

θ̇ε,+(λ, n) =

∑N
m=n+1(b0(m)− b1(m))sε,+(z, m)2

a(n)ρε,+(λ, n)2
≤ 0,

θ̇ε,−(λ, n) = −
∑n

m=1(b0(m)− b1(m))sε,−(z, m)2

a(n)ρε,−(λ, n)2
≥ 0. (3.3)

Furthermore, we have the following result from classical perturbation theory.
We add a simple direct proof for convenience of the reader.

Lemma 3.2. Suppose b0 − b1 ≥ 0 (resp. b0 − b1 ≤ 0). Then the eigenvalues of Hε are
analytic functions with respect to ε and they are decreasing (resp. increasing).

Proof. First of all the Prüfer angles θε,±(λ, n) are analytic with respect to ε since
sε,±(λ, n) is a polynomial with respect to ε. Moreover, λ ∈ σ(Hε) is equivalent
to θε,+(λ, 0) ≡ 0 mod π (resp. θε,−(λ, N) ≡ 0 mod π) and monotonicity follows
from (3.3).

In particular, this implies that P (Hε) = #{E ∈ σ(Hε)|E < λ} is continuous
from below (resp. above) in ε if b0 − b1 ≥ 0 (resp. b0 − b1 ≤ 0).

Now we are ready for the

Proof of Theorem 1.2. It suffices to prove the result for #(s0,+(λ0), s1,−(λ1)), where
we can assume λ0 = λ1 = 0 without restriction and set sε,±(n) = sε,±(0, n) for
notational convenience. We split b0 − b1 according to

b0 − b1 = b+ − b−, b+, b− ≥ 0,

and introduce the operator H− = H0 − b−. Then H− is a negative perturbation of
H0 and H1 is a positive perturbation of H−.

Furthermore, define Hε by

Hε =

H0 + 2ε(H− −H0), ε ∈ [0, 1/2],

H− + 2(ε− 1/2)(H1 −H−), ε ∈ [1/2, 1].
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Let us look at (using (2.22))

Q(ε) = #(s0,+, sε,−) = d∆ε(N)/πe − b∆ε(0)/πc − 1, ∆ε(n) = ∆s0,+,sε,−(n)

and consider ε ∈ [0, 1/2]. At the left boundary ∆ε(0) remains constant whereas at
the right boundary ∆ε(N) is increasing by (3.3). Moreover, it hits a multiple of π

whenever 0 ∈ σ(Hε). So Q(ε) is a piecewise constant function which is continuous
from below and jumps by one whenever 0 ∈ σ(Hε). By Lemma 3.2 the same is
true for

P (ε) = #{E ∈ σ(Hε)|E < 0} −#{E ∈ σ(H0)|E ≤ 0}

and since we have Q(0) = P (0), we conclude Q(ε) = P (ε) for all ε ∈ [0, 1/2]. To
see the remaining case ε = [1/2, 1], simply replace increasing by decreasing and
continuous from below by continuous from above.
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